Bi-Objective Flexible Job-Shop Scheduling Problem Considering Energy Consumption under Stochastic Processing Times
This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration o...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-12, Vol.11 (12), p.e0167427-e0167427 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0167427 |
---|---|
container_issue | 12 |
container_start_page | e0167427 |
container_title | PloS one |
container_volume | 11 |
creator | Yang, Xin Zeng, Zhenxiang Wang, Ruidong Sun, Xueshan |
description | This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The case study on GM Corporation verifies that the NSGA-II used in this paper is effective and has advantages to solve the proposed model comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized widely in the manufacturing industry, because it can reduce the energy consumption of the energy-intensive manufacturing enterprise with less investment when the new approach is applied in existing systems. |
doi_str_mv | 10.1371/journal.pone.0167427 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1845257955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472310924</galeid><doaj_id>oai_doaj_org_article_c6773e81398840a9a7158edcc7544dc4</doaj_id><sourcerecordid>A472310924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-1f83c6cbb41dce03290221cbde2d85015a4d524e8b9298acf45ef2e44bdb85c3</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBEQkJwkeLPxLlBGtUGRZOKaMWt5TgniaskLnYybf8eZ-2mFu1i8kWsc57zxucrit5iNMM0w182dnS9amdb28MM4TRjJHsWneKckiQliD4_uJ9Er7zfIMSpSNOX0QnJcpThlJ5G7ptJlsUG9GCuIb5s4cYULcQ_bZGsGruNV7qBcmxNX8e_nA2uLp7b3psS3GS76MHVt3emsdsOxvbx2AdfvBqsbpQfjJ7iNHg_4WvTgX8dvahU6-HN_nsWrS8v1vMfydXy-2J-fpXojPAhwZWgOtVFwXCpAVGSI0KwLkogpeAIc8VKThiIIie5ULpiHCoCjBVlIbimZ9H7ney2tV7uq-UlFowTnuWcB2KxI0qrNnLrTKfcrbTKyDuDdbVULmTQgtRpllEQmOZCMKRylWEuoNQ644yVmgWtr_u_jUUXHNAPTrVHosee3jSytteSYxrahILAp72As39H8IPsjNfQtqoHO07vTgWlnJGnoIwLkoaZCOiH_9DHC7GnahVyNX1lwxP1JCrPWUYoRjmZUpw9QoVTQmd0mMLKBPtRwOejgMAMcDPUavReLla_n84u_xyzHw_YBlQ7NN624zR-_hhkO1A7672D6qEfGMlpie6rIaclkvslCmHvDnv5EHS_NfQfIQUXSg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845257955</pqid></control><display><type>article</type><title>Bi-Objective Flexible Job-Shop Scheduling Problem Considering Energy Consumption under Stochastic Processing Times</title><source>MEDLINE</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Xin ; Zeng, Zhenxiang ; Wang, Ruidong ; Sun, Xueshan</creator><contributor>Song, Houbing</contributor><creatorcontrib>Yang, Xin ; Zeng, Zhenxiang ; Wang, Ruidong ; Sun, Xueshan ; Song, Houbing</creatorcontrib><description>This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The case study on GM Corporation verifies that the NSGA-II used in this paper is effective and has advantages to solve the proposed model comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized widely in the manufacturing industry, because it can reduce the energy consumption of the energy-intensive manufacturing enterprise with less investment when the new approach is applied in existing systems.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0167427</identifier><identifier>PMID: 27907163</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Biology and Life Sciences ; Classification ; Completion time ; Energy consumption ; Energy Metabolism ; Engineering ; Engineering and Technology ; Genetic algorithms ; Job shops ; Linear programming ; Manufacturing ; Manufacturing industry ; Mathematical models ; Methods ; Models, Theoretical ; Optimization ; Physical Sciences ; Problems ; Production scheduling ; Research and Analysis Methods ; Researchers ; Scheduling ; Small & medium sized enterprises-SME ; Sorting algorithms ; Stochastic Processes ; Stochasticity ; Studies</subject><ispartof>PloS one, 2016-12, Vol.11 (12), p.e0167427-e0167427</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Yang et al 2016 Yang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-1f83c6cbb41dce03290221cbde2d85015a4d524e8b9298acf45ef2e44bdb85c3</citedby><cites>FETCH-LOGICAL-c725t-1f83c6cbb41dce03290221cbde2d85015a4d524e8b9298acf45ef2e44bdb85c3</cites><orcidid>0000-0001-6636-9853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131930/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131930/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23849,27907,27908,53774,53776,79351,79352</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27907163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Song, Houbing</contributor><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Zeng, Zhenxiang</creatorcontrib><creatorcontrib>Wang, Ruidong</creatorcontrib><creatorcontrib>Sun, Xueshan</creatorcontrib><title>Bi-Objective Flexible Job-Shop Scheduling Problem Considering Energy Consumption under Stochastic Processing Times</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The case study on GM Corporation verifies that the NSGA-II used in this paper is effective and has advantages to solve the proposed model comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized widely in the manufacturing industry, because it can reduce the energy consumption of the energy-intensive manufacturing enterprise with less investment when the new approach is applied in existing systems.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Classification</subject><subject>Completion time</subject><subject>Energy consumption</subject><subject>Energy Metabolism</subject><subject>Engineering</subject><subject>Engineering and Technology</subject><subject>Genetic algorithms</subject><subject>Job shops</subject><subject>Linear programming</subject><subject>Manufacturing</subject><subject>Manufacturing industry</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Optimization</subject><subject>Physical Sciences</subject><subject>Problems</subject><subject>Production scheduling</subject><subject>Research and Analysis Methods</subject><subject>Researchers</subject><subject>Scheduling</subject><subject>Small & medium sized enterprises-SME</subject><subject>Sorting algorithms</subject><subject>Stochastic Processes</subject><subject>Stochasticity</subject><subject>Studies</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBEQkJwkeLPxLlBGtUGRZOKaMWt5TgniaskLnYybf8eZ-2mFu1i8kWsc57zxucrit5iNMM0w182dnS9amdb28MM4TRjJHsWneKckiQliD4_uJ9Er7zfIMSpSNOX0QnJcpThlJ5G7ptJlsUG9GCuIb5s4cYULcQ_bZGsGruNV7qBcmxNX8e_nA2uLp7b3psS3GS76MHVt3emsdsOxvbx2AdfvBqsbpQfjJ7iNHg_4WvTgX8dvahU6-HN_nsWrS8v1vMfydXy-2J-fpXojPAhwZWgOtVFwXCpAVGSI0KwLkogpeAIc8VKThiIIie5ULpiHCoCjBVlIbimZ9H7ney2tV7uq-UlFowTnuWcB2KxI0qrNnLrTKfcrbTKyDuDdbVULmTQgtRpllEQmOZCMKRylWEuoNQ644yVmgWtr_u_jUUXHNAPTrVHosee3jSytteSYxrahILAp72As39H8IPsjNfQtqoHO07vTgWlnJGnoIwLkoaZCOiH_9DHC7GnahVyNX1lwxP1JCrPWUYoRjmZUpw9QoVTQmd0mMLKBPtRwOejgMAMcDPUavReLla_n84u_xyzHw_YBlQ7NN624zR-_hhkO1A7672D6qEfGMlpie6rIaclkvslCmHvDnv5EHS_NfQfIQUXSg</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Yang, Xin</creator><creator>Zeng, Zhenxiang</creator><creator>Wang, Ruidong</creator><creator>Sun, Xueshan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6636-9853</orcidid></search><sort><creationdate>20161201</creationdate><title>Bi-Objective Flexible Job-Shop Scheduling Problem Considering Energy Consumption under Stochastic Processing Times</title><author>Yang, Xin ; Zeng, Zhenxiang ; Wang, Ruidong ; Sun, Xueshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-1f83c6cbb41dce03290221cbde2d85015a4d524e8b9298acf45ef2e44bdb85c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Classification</topic><topic>Completion time</topic><topic>Energy consumption</topic><topic>Energy Metabolism</topic><topic>Engineering</topic><topic>Engineering and Technology</topic><topic>Genetic algorithms</topic><topic>Job shops</topic><topic>Linear programming</topic><topic>Manufacturing</topic><topic>Manufacturing industry</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Optimization</topic><topic>Physical Sciences</topic><topic>Problems</topic><topic>Production scheduling</topic><topic>Research and Analysis Methods</topic><topic>Researchers</topic><topic>Scheduling</topic><topic>Small & medium sized enterprises-SME</topic><topic>Sorting algorithms</topic><topic>Stochastic Processes</topic><topic>Stochasticity</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Zeng, Zhenxiang</creatorcontrib><creatorcontrib>Wang, Ruidong</creatorcontrib><creatorcontrib>Sun, Xueshan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xin</au><au>Zeng, Zhenxiang</au><au>Wang, Ruidong</au><au>Sun, Xueshan</au><au>Song, Houbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bi-Objective Flexible Job-Shop Scheduling Problem Considering Energy Consumption under Stochastic Processing Times</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>11</volume><issue>12</issue><spage>e0167427</spage><epage>e0167427</epage><pages>e0167427-e0167427</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The case study on GM Corporation verifies that the NSGA-II used in this paper is effective and has advantages to solve the proposed model comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized widely in the manufacturing industry, because it can reduce the energy consumption of the energy-intensive manufacturing enterprise with less investment when the new approach is applied in existing systems.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27907163</pmid><doi>10.1371/journal.pone.0167427</doi><tpages>e0167427</tpages><orcidid>https://orcid.org/0000-0001-6636-9853</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-12, Vol.11 (12), p.e0167427-e0167427 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1845257955 |
source | MEDLINE; Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Analysis Biology and Life Sciences Classification Completion time Energy consumption Energy Metabolism Engineering Engineering and Technology Genetic algorithms Job shops Linear programming Manufacturing Manufacturing industry Mathematical models Methods Models, Theoretical Optimization Physical Sciences Problems Production scheduling Research and Analysis Methods Researchers Scheduling Small & medium sized enterprises-SME Sorting algorithms Stochastic Processes Stochasticity Studies |
title | Bi-Objective Flexible Job-Shop Scheduling Problem Considering Energy Consumption under Stochastic Processing Times |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bi-Objective%20Flexible%20Job-Shop%20Scheduling%20Problem%20Considering%20Energy%20Consumption%20under%20Stochastic%20Processing%20Times&rft.jtitle=PloS%20one&rft.au=Yang,%20Xin&rft.date=2016-12-01&rft.volume=11&rft.issue=12&rft.spage=e0167427&rft.epage=e0167427&rft.pages=e0167427-e0167427&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0167427&rft_dat=%3Cgale_plos_%3EA472310924%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845257955&rft_id=info:pmid/27907163&rft_galeid=A472310924&rft_doaj_id=oai_doaj_org_article_c6773e81398840a9a7158edcc7544dc4&rfr_iscdi=true |