Assessing White Matter Microstructure in Brain Regions with Different Myelin Architecture Using MRI
We investigate how known differences in myelin architecture between regions along the cortico-spinal tract and frontal white matter (WM) in 19 healthy adolescents are reflected in several quantitative MRI parameters that have been proposed to non-invasively probe WM microstructure. In a clinically f...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-11, Vol.11 (11), p.e0167274-e0167274 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0167274 |
---|---|
container_issue | 11 |
container_start_page | e0167274 |
container_title | PloS one |
container_volume | 11 |
creator | Groeschel, Samuel Hagberg, Gisela E Schultz, Thomas Balla, Dávid Z Klose, Uwe Hauser, Till-Karsten Nägele, Thomas Bieri, Oliver Prasloski, Thomas MacKay, Alex L Krägeloh-Mann, Ingeborg Scheffler, Klaus |
description | We investigate how known differences in myelin architecture between regions along the cortico-spinal tract and frontal white matter (WM) in 19 healthy adolescents are reflected in several quantitative MRI parameters that have been proposed to non-invasively probe WM microstructure. In a clinically feasible scan time, both conventional imaging sequences as well as microstructural MRI parameters were assessed in order to quantitatively characterise WM regions that are known to differ in the thickness of their myelin sheaths, and in the presence of crossing or parallel fibre organisation.
We found that diffusion imaging, MR spectroscopy (MRS), myelin water fraction (MWF), Magnetization Transfer Imaging, and Quantitative Susceptibility Mapping were myelin-sensitive in different ways, giving complementary information for characterising WM microstructure with different underlying fibre architecture. From the diffusion parameters, neurite density (NODDI) was found to be more sensitive than fractional anisotropy (FA), underlining the limitation of FA in WM crossing fibre regions. In terms of sensitivity to different myelin content, we found that MWF, the mean diffusivity and chemical-shift imaging based MRS yielded the best discrimination between areas.
Multimodal assessment of WM microstructure was possible within clinically feasible scan times using a broad combination of quantitative microstructural MRI sequences. By assessing new microstructural WM parameters we were able to provide normative data and discuss their interpretation in regions with different myelin architecture, as well as their possible application as biomarker for WM disorders. |
doi_str_mv | 10.1371/journal.pone.0167274 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1844595832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472218275</galeid><doaj_id>oai_doaj_org_article_7146c224192f413a8b04121588fea13a</doaj_id><sourcerecordid>A472218275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-41d0ff29d0ddf3c82807dd972d70d4e4c4403c686d60d948273e615924dea3353</originalsourceid><addsrcrecordid>eNqNk11v0zAYhSMEYmPwDxBEQkJw0eLP2LlBKuOr0qpJhcGl5dlO4iqNi-0A-_c4azY1aBdTpMSxn3PiHL9vlj2HYA4xg-82rvedbOc715k5gAVDjDzIjmGJ0axAAD88GB9lT0LYAEAxL4rH2RFivOQMwONMLUIwIdiuzn82Npp8JWM0Pl9Z5V2Ivlex9ya3Xf7By3Rfm9q6LuR_bGzyj7aqjDddzFdXpk2rC68Gk73m4tp1tV4-zR5Vsg3m2fg8yS4-f_p--nV2dv5lebo4mymGaJwRqEFVoVIDrSusOOKAaV0ypBnQxBBFCMCq4IUugC4JRwybAtISEW0kxhSfZC_3vrvWBTHmEwTkhNCScowSsdwT2smN2Hm7lf5KOGnF9YTztZA-WtUawSApFEIElqgiEEt-CQhEkHJeGZnek9f78Wv95dZolWLwsp2YTlc624ja_RYUIkYZTAZvRgPvfvUmRLG1QZm2lZ1x_bBvChgHoOD3QAlFFNCSJfTVf-jdQYxULdO_2q5yaYtqMBULwhCCKd0h0PkdVLq02VqV6q6yaX4ieDsRJCaav7GWfQhi-W19f_b8x5R9fcA2RraxCa7t41CLU5DswaF6gzfV7XlAIIa2uUlDDG0jxrZJsheHZ3kruukT_A9NIRBJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844595832</pqid></control><display><type>article</type><title>Assessing White Matter Microstructure in Brain Regions with Different Myelin Architecture Using MRI</title><source>MEDLINE</source><source>Public Library of Science</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Groeschel, Samuel ; Hagberg, Gisela E ; Schultz, Thomas ; Balla, Dávid Z ; Klose, Uwe ; Hauser, Till-Karsten ; Nägele, Thomas ; Bieri, Oliver ; Prasloski, Thomas ; MacKay, Alex L ; Krägeloh-Mann, Ingeborg ; Scheffler, Klaus</creator><creatorcontrib>Groeschel, Samuel ; Hagberg, Gisela E ; Schultz, Thomas ; Balla, Dávid Z ; Klose, Uwe ; Hauser, Till-Karsten ; Nägele, Thomas ; Bieri, Oliver ; Prasloski, Thomas ; MacKay, Alex L ; Krägeloh-Mann, Ingeborg ; Scheffler, Klaus</creatorcontrib><description>We investigate how known differences in myelin architecture between regions along the cortico-spinal tract and frontal white matter (WM) in 19 healthy adolescents are reflected in several quantitative MRI parameters that have been proposed to non-invasively probe WM microstructure. In a clinically feasible scan time, both conventional imaging sequences as well as microstructural MRI parameters were assessed in order to quantitatively characterise WM regions that are known to differ in the thickness of their myelin sheaths, and in the presence of crossing or parallel fibre organisation.
We found that diffusion imaging, MR spectroscopy (MRS), myelin water fraction (MWF), Magnetization Transfer Imaging, and Quantitative Susceptibility Mapping were myelin-sensitive in different ways, giving complementary information for characterising WM microstructure with different underlying fibre architecture. From the diffusion parameters, neurite density (NODDI) was found to be more sensitive than fractional anisotropy (FA), underlining the limitation of FA in WM crossing fibre regions. In terms of sensitivity to different myelin content, we found that MWF, the mean diffusivity and chemical-shift imaging based MRS yielded the best discrimination between areas.
Multimodal assessment of WM microstructure was possible within clinically feasible scan times using a broad combination of quantitative microstructural MRI sequences. By assessing new microstructural WM parameters we were able to provide normative data and discuss their interpretation in regions with different myelin architecture, as well as their possible application as biomarker for WM disorders.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0167274</identifier><identifier>PMID: 27898701</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adolescent ; Adolescents ; Adult ; Anisotropy ; Architecture ; Biology and Life Sciences ; Biomarkers ; Brain ; Brain - diagnostic imaging ; Brain - metabolism ; Brain Mapping ; Brain research ; Child ; Children & youth ; Cybernetics ; Data processing ; Diffusion ; Diffusion parameters ; Diffusion Tensor Imaging ; Feasibility studies ; Female ; Gene mapping ; Histology ; Humans ; Image Processing, Computer-Assisted ; Magnetic Resonance Imaging ; Magnetic resonance spectroscopy ; Male ; Medicine and Health Sciences ; Microstructure ; Microstructures ; Myelin ; Myelin sheath ; Myelin Sheath - chemistry ; Myelin Sheath - metabolism ; Neuroimaging ; NMR ; Nuclear magnetic resonance ; Order parameters ; Parameter sensitivity ; Physical Sciences ; Research and Analysis Methods ; Sequences ; Sheaths ; Spectroscopy ; Substantia alba ; White Matter - diagnostic imaging ; White Matter - metabolism ; White Matter - pathology ; White Matter - ultrastructure ; Young Adult</subject><ispartof>PloS one, 2016-11, Vol.11 (11), p.e0167274-e0167274</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Groeschel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Groeschel et al 2016 Groeschel et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-41d0ff29d0ddf3c82807dd972d70d4e4c4403c686d60d948273e615924dea3353</citedby><cites>FETCH-LOGICAL-c725t-41d0ff29d0ddf3c82807dd972d70d4e4c4403c686d60d948273e615924dea3353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5127571/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5127571/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27898701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Groeschel, Samuel</creatorcontrib><creatorcontrib>Hagberg, Gisela E</creatorcontrib><creatorcontrib>Schultz, Thomas</creatorcontrib><creatorcontrib>Balla, Dávid Z</creatorcontrib><creatorcontrib>Klose, Uwe</creatorcontrib><creatorcontrib>Hauser, Till-Karsten</creatorcontrib><creatorcontrib>Nägele, Thomas</creatorcontrib><creatorcontrib>Bieri, Oliver</creatorcontrib><creatorcontrib>Prasloski, Thomas</creatorcontrib><creatorcontrib>MacKay, Alex L</creatorcontrib><creatorcontrib>Krägeloh-Mann, Ingeborg</creatorcontrib><creatorcontrib>Scheffler, Klaus</creatorcontrib><title>Assessing White Matter Microstructure in Brain Regions with Different Myelin Architecture Using MRI</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We investigate how known differences in myelin architecture between regions along the cortico-spinal tract and frontal white matter (WM) in 19 healthy adolescents are reflected in several quantitative MRI parameters that have been proposed to non-invasively probe WM microstructure. In a clinically feasible scan time, both conventional imaging sequences as well as microstructural MRI parameters were assessed in order to quantitatively characterise WM regions that are known to differ in the thickness of their myelin sheaths, and in the presence of crossing or parallel fibre organisation.
We found that diffusion imaging, MR spectroscopy (MRS), myelin water fraction (MWF), Magnetization Transfer Imaging, and Quantitative Susceptibility Mapping were myelin-sensitive in different ways, giving complementary information for characterising WM microstructure with different underlying fibre architecture. From the diffusion parameters, neurite density (NODDI) was found to be more sensitive than fractional anisotropy (FA), underlining the limitation of FA in WM crossing fibre regions. In terms of sensitivity to different myelin content, we found that MWF, the mean diffusivity and chemical-shift imaging based MRS yielded the best discrimination between areas.
Multimodal assessment of WM microstructure was possible within clinically feasible scan times using a broad combination of quantitative microstructural MRI sequences. By assessing new microstructural WM parameters we were able to provide normative data and discuss their interpretation in regions with different myelin architecture, as well as their possible application as biomarker for WM disorders.</description><subject>Adolescent</subject><subject>Adolescents</subject><subject>Adult</subject><subject>Anisotropy</subject><subject>Architecture</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - metabolism</subject><subject>Brain Mapping</subject><subject>Brain research</subject><subject>Child</subject><subject>Children & youth</subject><subject>Cybernetics</subject><subject>Data processing</subject><subject>Diffusion</subject><subject>Diffusion parameters</subject><subject>Diffusion Tensor Imaging</subject><subject>Feasibility studies</subject><subject>Female</subject><subject>Gene mapping</subject><subject>Histology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic resonance spectroscopy</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Microstructure</subject><subject>Microstructures</subject><subject>Myelin</subject><subject>Myelin sheath</subject><subject>Myelin Sheath - chemistry</subject><subject>Myelin Sheath - metabolism</subject><subject>Neuroimaging</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Order parameters</subject><subject>Parameter sensitivity</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Sequences</subject><subject>Sheaths</subject><subject>Spectroscopy</subject><subject>Substantia alba</subject><subject>White Matter - diagnostic imaging</subject><subject>White Matter - metabolism</subject><subject>White Matter - pathology</subject><subject>White Matter - ultrastructure</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAYhSMEYmPwDxBEQkJw0eLP2LlBKuOr0qpJhcGl5dlO4iqNi-0A-_c4azY1aBdTpMSxn3PiHL9vlj2HYA4xg-82rvedbOc715k5gAVDjDzIjmGJ0axAAD88GB9lT0LYAEAxL4rH2RFivOQMwONMLUIwIdiuzn82Npp8JWM0Pl9Z5V2Ivlex9ya3Xf7By3Rfm9q6LuR_bGzyj7aqjDddzFdXpk2rC68Gk73m4tp1tV4-zR5Vsg3m2fg8yS4-f_p--nV2dv5lebo4mymGaJwRqEFVoVIDrSusOOKAaV0ypBnQxBBFCMCq4IUugC4JRwybAtISEW0kxhSfZC_3vrvWBTHmEwTkhNCScowSsdwT2smN2Hm7lf5KOGnF9YTztZA-WtUawSApFEIElqgiEEt-CQhEkHJeGZnek9f78Wv95dZolWLwsp2YTlc624ja_RYUIkYZTAZvRgPvfvUmRLG1QZm2lZ1x_bBvChgHoOD3QAlFFNCSJfTVf-jdQYxULdO_2q5yaYtqMBULwhCCKd0h0PkdVLq02VqV6q6yaX4ieDsRJCaav7GWfQhi-W19f_b8x5R9fcA2RraxCa7t41CLU5DswaF6gzfV7XlAIIa2uUlDDG0jxrZJsheHZ3kruukT_A9NIRBJ</recordid><startdate>20161129</startdate><enddate>20161129</enddate><creator>Groeschel, Samuel</creator><creator>Hagberg, Gisela E</creator><creator>Schultz, Thomas</creator><creator>Balla, Dávid Z</creator><creator>Klose, Uwe</creator><creator>Hauser, Till-Karsten</creator><creator>Nägele, Thomas</creator><creator>Bieri, Oliver</creator><creator>Prasloski, Thomas</creator><creator>MacKay, Alex L</creator><creator>Krägeloh-Mann, Ingeborg</creator><creator>Scheffler, Klaus</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20161129</creationdate><title>Assessing White Matter Microstructure in Brain Regions with Different Myelin Architecture Using MRI</title><author>Groeschel, Samuel ; Hagberg, Gisela E ; Schultz, Thomas ; Balla, Dávid Z ; Klose, Uwe ; Hauser, Till-Karsten ; Nägele, Thomas ; Bieri, Oliver ; Prasloski, Thomas ; MacKay, Alex L ; Krägeloh-Mann, Ingeborg ; Scheffler, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-41d0ff29d0ddf3c82807dd972d70d4e4c4403c686d60d948273e615924dea3353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adolescent</topic><topic>Adolescents</topic><topic>Adult</topic><topic>Anisotropy</topic><topic>Architecture</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - metabolism</topic><topic>Brain Mapping</topic><topic>Brain research</topic><topic>Child</topic><topic>Children & youth</topic><topic>Cybernetics</topic><topic>Data processing</topic><topic>Diffusion</topic><topic>Diffusion parameters</topic><topic>Diffusion Tensor Imaging</topic><topic>Feasibility studies</topic><topic>Female</topic><topic>Gene mapping</topic><topic>Histology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic resonance spectroscopy</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Microstructure</topic><topic>Microstructures</topic><topic>Myelin</topic><topic>Myelin sheath</topic><topic>Myelin Sheath - chemistry</topic><topic>Myelin Sheath - metabolism</topic><topic>Neuroimaging</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Order parameters</topic><topic>Parameter sensitivity</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Sequences</topic><topic>Sheaths</topic><topic>Spectroscopy</topic><topic>Substantia alba</topic><topic>White Matter - diagnostic imaging</topic><topic>White Matter - metabolism</topic><topic>White Matter - pathology</topic><topic>White Matter - ultrastructure</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groeschel, Samuel</creatorcontrib><creatorcontrib>Hagberg, Gisela E</creatorcontrib><creatorcontrib>Schultz, Thomas</creatorcontrib><creatorcontrib>Balla, Dávid Z</creatorcontrib><creatorcontrib>Klose, Uwe</creatorcontrib><creatorcontrib>Hauser, Till-Karsten</creatorcontrib><creatorcontrib>Nägele, Thomas</creatorcontrib><creatorcontrib>Bieri, Oliver</creatorcontrib><creatorcontrib>Prasloski, Thomas</creatorcontrib><creatorcontrib>MacKay, Alex L</creatorcontrib><creatorcontrib>Krägeloh-Mann, Ingeborg</creatorcontrib><creatorcontrib>Scheffler, Klaus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groeschel, Samuel</au><au>Hagberg, Gisela E</au><au>Schultz, Thomas</au><au>Balla, Dávid Z</au><au>Klose, Uwe</au><au>Hauser, Till-Karsten</au><au>Nägele, Thomas</au><au>Bieri, Oliver</au><au>Prasloski, Thomas</au><au>MacKay, Alex L</au><au>Krägeloh-Mann, Ingeborg</au><au>Scheffler, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing White Matter Microstructure in Brain Regions with Different Myelin Architecture Using MRI</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-11-29</date><risdate>2016</risdate><volume>11</volume><issue>11</issue><spage>e0167274</spage><epage>e0167274</epage><pages>e0167274-e0167274</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We investigate how known differences in myelin architecture between regions along the cortico-spinal tract and frontal white matter (WM) in 19 healthy adolescents are reflected in several quantitative MRI parameters that have been proposed to non-invasively probe WM microstructure. In a clinically feasible scan time, both conventional imaging sequences as well as microstructural MRI parameters were assessed in order to quantitatively characterise WM regions that are known to differ in the thickness of their myelin sheaths, and in the presence of crossing or parallel fibre organisation.
We found that diffusion imaging, MR spectroscopy (MRS), myelin water fraction (MWF), Magnetization Transfer Imaging, and Quantitative Susceptibility Mapping were myelin-sensitive in different ways, giving complementary information for characterising WM microstructure with different underlying fibre architecture. From the diffusion parameters, neurite density (NODDI) was found to be more sensitive than fractional anisotropy (FA), underlining the limitation of FA in WM crossing fibre regions. In terms of sensitivity to different myelin content, we found that MWF, the mean diffusivity and chemical-shift imaging based MRS yielded the best discrimination between areas.
Multimodal assessment of WM microstructure was possible within clinically feasible scan times using a broad combination of quantitative microstructural MRI sequences. By assessing new microstructural WM parameters we were able to provide normative data and discuss their interpretation in regions with different myelin architecture, as well as their possible application as biomarker for WM disorders.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27898701</pmid><doi>10.1371/journal.pone.0167274</doi><tpages>e0167274</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-11, Vol.11 (11), p.e0167274-e0167274 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1844595832 |
source | MEDLINE; Public Library of Science; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Adolescent Adolescents Adult Anisotropy Architecture Biology and Life Sciences Biomarkers Brain Brain - diagnostic imaging Brain - metabolism Brain Mapping Brain research Child Children & youth Cybernetics Data processing Diffusion Diffusion parameters Diffusion Tensor Imaging Feasibility studies Female Gene mapping Histology Humans Image Processing, Computer-Assisted Magnetic Resonance Imaging Magnetic resonance spectroscopy Male Medicine and Health Sciences Microstructure Microstructures Myelin Myelin sheath Myelin Sheath - chemistry Myelin Sheath - metabolism Neuroimaging NMR Nuclear magnetic resonance Order parameters Parameter sensitivity Physical Sciences Research and Analysis Methods Sequences Sheaths Spectroscopy Substantia alba White Matter - diagnostic imaging White Matter - metabolism White Matter - pathology White Matter - ultrastructure Young Adult |
title | Assessing White Matter Microstructure in Brain Regions with Different Myelin Architecture Using MRI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20White%20Matter%20Microstructure%20in%20Brain%20Regions%20with%20Different%20Myelin%20Architecture%20Using%20MRI&rft.jtitle=PloS%20one&rft.au=Groeschel,%20Samuel&rft.date=2016-11-29&rft.volume=11&rft.issue=11&rft.spage=e0167274&rft.epage=e0167274&rft.pages=e0167274-e0167274&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0167274&rft_dat=%3Cgale_plos_%3EA472218275%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844595832&rft_id=info:pmid/27898701&rft_galeid=A472218275&rft_doaj_id=oai_doaj_org_article_7146c224192f413a8b04121588fea13a&rfr_iscdi=true |