Vasodilator-Stimulated Phosphoprotein Activity Is Required for Coxiella burnetii Growth in Human Macrophages

Coxiella burnetii is an intracellular bacterial pathogen that causes human Q fever, an acute flu-like illness that can progress to chronic endocarditis and liver and bone infections. Humans are typically infected by aerosol-mediated transmission, and C. burnetii initially targets alveolar macrophage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2016-10, Vol.12 (10), p.e1005915-e1005915
Hauptverfasser: Colonne, Punsiri M, Winchell, Caylin G, Graham, Joseph G, Onyilagha, Frances I, MacDonald, Laura J, Doeppler, Heike R, Storz, Peter, Kurten, Richard C, Beare, Paul A, Heinzen, Robert A, Voth, Daniel E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1005915
container_issue 10
container_start_page e1005915
container_title PLoS pathogens
container_volume 12
creator Colonne, Punsiri M
Winchell, Caylin G
Graham, Joseph G
Onyilagha, Frances I
MacDonald, Laura J
Doeppler, Heike R
Storz, Peter
Kurten, Richard C
Beare, Paul A
Heinzen, Robert A
Voth, Daniel E
description Coxiella burnetii is an intracellular bacterial pathogen that causes human Q fever, an acute flu-like illness that can progress to chronic endocarditis and liver and bone infections. Humans are typically infected by aerosol-mediated transmission, and C. burnetii initially targets alveolar macrophages wherein the pathogen replicates in a phagolysosome-like niche known as the parasitophorous vacuole (PV). C. burnetii manipulates host cAMP-dependent protein kinase (PKA) signaling to promote PV formation, cell survival, and bacterial replication. In this study, we identified the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP) as a PKA substrate that is increasingly phosphorylated at S157 and S239 during C. burnetii infection. Avirulent and virulent C. burnetii triggered increased levels of phosphorylated VASP in macrophage-like THP-1 cells and primary human alveolar macrophages, and this event required the Cα subunit of PKA. VASP phosphorylation also required bacterial protein synthesis and secretion of effector proteins via a type IV secretion system, indicating the pathogen actively triggers prolonged VASP phosphorylation. Optimal PV formation and intracellular bacterial replication required VASP activity, as siRNA-mediated depletion of VASP reduced PV size and bacterial growth. Interestingly, ectopic expression of a phospho-mimetic VASP (S239E) mutant protein prevented optimal PV formation, whereas VASP (S157E) mutant expression had no effect. VASP (S239E) expression also prevented trafficking of bead-containing phagosomes to the PV, indicating proper VASP activity is critical for heterotypic fusion events that control PV expansion in macrophages. Finally, expression of dominant negative VASP (S157A) in C. burnetii-infected cells impaired PV formation, confirming importance of the protein for proper infection. This study provides the first evidence of VASP manipulation by an intravacuolar bacterial pathogen via activation of PKA in human macrophages.
doi_str_mv 10.1371/journal.ppat.1005915
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1840926016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472228695</galeid><doaj_id>oai_doaj_org_article_44dc92041f5740fcbeb48f5a7e3404c8</doaj_id><sourcerecordid>A472228695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c694t-3e81eb71fa9d377d08b556e816a6abd91562ff2adecb54413b3613de8db838413</originalsourceid><addsrcrecordid>eNqVk8tu1DAUhiMEohd4AwSR2MBiBt-TbJBGI2hHKhe1wNZyfJnxKIlT2-nl7XGYtOqgLkBZxD7-_j_nHOdk2SsI5hAX8MPWDb4TzbzvRZxDAGgF6ZPsEFKKZwUuyNMH64PsKIQtAARiyJ5nB6goIIQVPMyaXyI4ZRsRnZ9dRNsOaalV_n3jQr9xvXdR2y5fyGivbLzNVyE_15eD9YkxzudLd2N104i8TtnoaG1-4t113ORJdDq0osu_COldvxFrHV5kz4xogn45vY-zn58__Viezs6-nayWi7OZZBWJM6xLqOsCGlEpXBQKlDWlLAWZYKJWqU6GjEFCaVlTkmqqMYNY6VLVJS7T_jh7s_PtGxf41KjAYUlAhRiALBGrHaGc2PLe21b4W-6E5X8Czq-58NHKRnNClKxQap2hBQFG1rompaGi0JgAIsvk9XH62lC3WkndRS-aPdP9k85u-NpdcQooJpgmg3eTgXeXgw6RtzbIsauddsOYN8MIQoTLf0CTH6MIgYS-_Qt9vBETtRapVtsZl1KUoylfkAIhVLJqzHD-CJUepVsrXaeNTfE9wfs9QWKivolrMYTAVxfn_8F-3WfJjk3_VAhem_s2Q8DHsbgrko9jwaexSLLXD6_oXnQ3B_g315wJFw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1840926016</pqid></control><display><type>article</type><title>Vasodilator-Stimulated Phosphoprotein Activity Is Required for Coxiella burnetii Growth in Human Macrophages</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Colonne, Punsiri M ; Winchell, Caylin G ; Graham, Joseph G ; Onyilagha, Frances I ; MacDonald, Laura J ; Doeppler, Heike R ; Storz, Peter ; Kurten, Richard C ; Beare, Paul A ; Heinzen, Robert A ; Voth, Daniel E</creator><contributor>Luo, Zhao-Qing</contributor><creatorcontrib>Colonne, Punsiri M ; Winchell, Caylin G ; Graham, Joseph G ; Onyilagha, Frances I ; MacDonald, Laura J ; Doeppler, Heike R ; Storz, Peter ; Kurten, Richard C ; Beare, Paul A ; Heinzen, Robert A ; Voth, Daniel E ; Luo, Zhao-Qing</creatorcontrib><description>Coxiella burnetii is an intracellular bacterial pathogen that causes human Q fever, an acute flu-like illness that can progress to chronic endocarditis and liver and bone infections. Humans are typically infected by aerosol-mediated transmission, and C. burnetii initially targets alveolar macrophages wherein the pathogen replicates in a phagolysosome-like niche known as the parasitophorous vacuole (PV). C. burnetii manipulates host cAMP-dependent protein kinase (PKA) signaling to promote PV formation, cell survival, and bacterial replication. In this study, we identified the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP) as a PKA substrate that is increasingly phosphorylated at S157 and S239 during C. burnetii infection. Avirulent and virulent C. burnetii triggered increased levels of phosphorylated VASP in macrophage-like THP-1 cells and primary human alveolar macrophages, and this event required the Cα subunit of PKA. VASP phosphorylation also required bacterial protein synthesis and secretion of effector proteins via a type IV secretion system, indicating the pathogen actively triggers prolonged VASP phosphorylation. Optimal PV formation and intracellular bacterial replication required VASP activity, as siRNA-mediated depletion of VASP reduced PV size and bacterial growth. Interestingly, ectopic expression of a phospho-mimetic VASP (S239E) mutant protein prevented optimal PV formation, whereas VASP (S157E) mutant expression had no effect. VASP (S239E) expression also prevented trafficking of bead-containing phagosomes to the PV, indicating proper VASP activity is critical for heterotypic fusion events that control PV expansion in macrophages. Finally, expression of dominant negative VASP (S157A) in C. burnetii-infected cells impaired PV formation, confirming importance of the protein for proper infection. This study provides the first evidence of VASP manipulation by an intravacuolar bacterial pathogen via activation of PKA in human macrophages.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1005915</identifier><identifier>PMID: 27711191</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Bacteriology ; Biology and Life Sciences ; Cell Adhesion Molecules - metabolism ; Colleges &amp; universities ; Complications and side effects ; Coxiella burnetii ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Deoxyribonucleic acid ; DNA ; Endocarditis ; Enzyme Activation - physiology ; Fever ; Funding ; Gene Knockdown Techniques ; Genomes ; Host-Pathogen Interactions - physiology ; Humans ; Immunoblotting ; Immunology ; Immunoprecipitation ; Infections ; Infectious diseases ; Kinases ; Laboratories ; Macrophages ; Macrophages, Alveolar - metabolism ; Macrophages, Alveolar - microbiology ; Medicine and Health Sciences ; Microfilament Proteins - metabolism ; Microscopy, Confocal ; Motility ; Pathogenesis ; Phosphoproteins - metabolism ; Phosphorylation ; Proteins ; Q Fever - metabolism ; Research and Analysis Methods ; Rickettsiae ; Risk factors ; Software ; Vasodilator agents</subject><ispartof>PLoS pathogens, 2016-10, Vol.12 (10), p.e1005915-e1005915</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Growth in Human Macrophages. PLoS Pathog 12(10): e1005915. doi:10.1371/journal.ppat.1005915</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Growth in Human Macrophages. PLoS Pathog 12(10): e1005915. doi:10.1371/journal.ppat.1005915</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c694t-3e81eb71fa9d377d08b556e816a6abd91562ff2adecb54413b3613de8db838413</citedby><cites>FETCH-LOGICAL-c694t-3e81eb71fa9d377d08b556e816a6abd91562ff2adecb54413b3613de8db838413</cites><orcidid>0000-0001-6870-4619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053435/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053435/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27711191$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Luo, Zhao-Qing</contributor><creatorcontrib>Colonne, Punsiri M</creatorcontrib><creatorcontrib>Winchell, Caylin G</creatorcontrib><creatorcontrib>Graham, Joseph G</creatorcontrib><creatorcontrib>Onyilagha, Frances I</creatorcontrib><creatorcontrib>MacDonald, Laura J</creatorcontrib><creatorcontrib>Doeppler, Heike R</creatorcontrib><creatorcontrib>Storz, Peter</creatorcontrib><creatorcontrib>Kurten, Richard C</creatorcontrib><creatorcontrib>Beare, Paul A</creatorcontrib><creatorcontrib>Heinzen, Robert A</creatorcontrib><creatorcontrib>Voth, Daniel E</creatorcontrib><title>Vasodilator-Stimulated Phosphoprotein Activity Is Required for Coxiella burnetii Growth in Human Macrophages</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Coxiella burnetii is an intracellular bacterial pathogen that causes human Q fever, an acute flu-like illness that can progress to chronic endocarditis and liver and bone infections. Humans are typically infected by aerosol-mediated transmission, and C. burnetii initially targets alveolar macrophages wherein the pathogen replicates in a phagolysosome-like niche known as the parasitophorous vacuole (PV). C. burnetii manipulates host cAMP-dependent protein kinase (PKA) signaling to promote PV formation, cell survival, and bacterial replication. In this study, we identified the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP) as a PKA substrate that is increasingly phosphorylated at S157 and S239 during C. burnetii infection. Avirulent and virulent C. burnetii triggered increased levels of phosphorylated VASP in macrophage-like THP-1 cells and primary human alveolar macrophages, and this event required the Cα subunit of PKA. VASP phosphorylation also required bacterial protein synthesis and secretion of effector proteins via a type IV secretion system, indicating the pathogen actively triggers prolonged VASP phosphorylation. Optimal PV formation and intracellular bacterial replication required VASP activity, as siRNA-mediated depletion of VASP reduced PV size and bacterial growth. Interestingly, ectopic expression of a phospho-mimetic VASP (S239E) mutant protein prevented optimal PV formation, whereas VASP (S157E) mutant expression had no effect. VASP (S239E) expression also prevented trafficking of bead-containing phagosomes to the PV, indicating proper VASP activity is critical for heterotypic fusion events that control PV expansion in macrophages. Finally, expression of dominant negative VASP (S157A) in C. burnetii-infected cells impaired PV formation, confirming importance of the protein for proper infection. This study provides the first evidence of VASP manipulation by an intravacuolar bacterial pathogen via activation of PKA in human macrophages.</description><subject>Analysis</subject><subject>Bacteriology</subject><subject>Biology and Life Sciences</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Colleges &amp; universities</subject><subject>Complications and side effects</subject><subject>Coxiella burnetii</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Endocarditis</subject><subject>Enzyme Activation - physiology</subject><subject>Fever</subject><subject>Funding</subject><subject>Gene Knockdown Techniques</subject><subject>Genomes</subject><subject>Host-Pathogen Interactions - physiology</subject><subject>Humans</subject><subject>Immunoblotting</subject><subject>Immunology</subject><subject>Immunoprecipitation</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Macrophages</subject><subject>Macrophages, Alveolar - metabolism</subject><subject>Macrophages, Alveolar - microbiology</subject><subject>Medicine and Health Sciences</subject><subject>Microfilament Proteins - metabolism</subject><subject>Microscopy, Confocal</subject><subject>Motility</subject><subject>Pathogenesis</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Q Fever - metabolism</subject><subject>Research and Analysis Methods</subject><subject>Rickettsiae</subject><subject>Risk factors</subject><subject>Software</subject><subject>Vasodilator agents</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk8tu1DAUhiMEohd4AwSR2MBiBt-TbJBGI2hHKhe1wNZyfJnxKIlT2-nl7XGYtOqgLkBZxD7-_j_nHOdk2SsI5hAX8MPWDb4TzbzvRZxDAGgF6ZPsEFKKZwUuyNMH64PsKIQtAARiyJ5nB6goIIQVPMyaXyI4ZRsRnZ9dRNsOaalV_n3jQr9xvXdR2y5fyGivbLzNVyE_15eD9YkxzudLd2N104i8TtnoaG1-4t113ORJdDq0osu_COldvxFrHV5kz4xogn45vY-zn58__Viezs6-nayWi7OZZBWJM6xLqOsCGlEpXBQKlDWlLAWZYKJWqU6GjEFCaVlTkmqqMYNY6VLVJS7T_jh7s_PtGxf41KjAYUlAhRiALBGrHaGc2PLe21b4W-6E5X8Czq-58NHKRnNClKxQap2hBQFG1rompaGi0JgAIsvk9XH62lC3WkndRS-aPdP9k85u-NpdcQooJpgmg3eTgXeXgw6RtzbIsauddsOYN8MIQoTLf0CTH6MIgYS-_Qt9vBETtRapVtsZl1KUoylfkAIhVLJqzHD-CJUepVsrXaeNTfE9wfs9QWKivolrMYTAVxfn_8F-3WfJjk3_VAhem_s2Q8DHsbgrko9jwaexSLLXD6_oXnQ3B_g315wJFw</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Colonne, Punsiri M</creator><creator>Winchell, Caylin G</creator><creator>Graham, Joseph G</creator><creator>Onyilagha, Frances I</creator><creator>MacDonald, Laura J</creator><creator>Doeppler, Heike R</creator><creator>Storz, Peter</creator><creator>Kurten, Richard C</creator><creator>Beare, Paul A</creator><creator>Heinzen, Robert A</creator><creator>Voth, Daniel E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6870-4619</orcidid></search><sort><creationdate>20161001</creationdate><title>Vasodilator-Stimulated Phosphoprotein Activity Is Required for Coxiella burnetii Growth in Human Macrophages</title><author>Colonne, Punsiri M ; Winchell, Caylin G ; Graham, Joseph G ; Onyilagha, Frances I ; MacDonald, Laura J ; Doeppler, Heike R ; Storz, Peter ; Kurten, Richard C ; Beare, Paul A ; Heinzen, Robert A ; Voth, Daniel E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c694t-3e81eb71fa9d377d08b556e816a6abd91562ff2adecb54413b3613de8db838413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Bacteriology</topic><topic>Biology and Life Sciences</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Colleges &amp; universities</topic><topic>Complications and side effects</topic><topic>Coxiella burnetii</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Endocarditis</topic><topic>Enzyme Activation - physiology</topic><topic>Fever</topic><topic>Funding</topic><topic>Gene Knockdown Techniques</topic><topic>Genomes</topic><topic>Host-Pathogen Interactions - physiology</topic><topic>Humans</topic><topic>Immunoblotting</topic><topic>Immunology</topic><topic>Immunoprecipitation</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Macrophages</topic><topic>Macrophages, Alveolar - metabolism</topic><topic>Macrophages, Alveolar - microbiology</topic><topic>Medicine and Health Sciences</topic><topic>Microfilament Proteins - metabolism</topic><topic>Microscopy, Confocal</topic><topic>Motility</topic><topic>Pathogenesis</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Q Fever - metabolism</topic><topic>Research and Analysis Methods</topic><topic>Rickettsiae</topic><topic>Risk factors</topic><topic>Software</topic><topic>Vasodilator agents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colonne, Punsiri M</creatorcontrib><creatorcontrib>Winchell, Caylin G</creatorcontrib><creatorcontrib>Graham, Joseph G</creatorcontrib><creatorcontrib>Onyilagha, Frances I</creatorcontrib><creatorcontrib>MacDonald, Laura J</creatorcontrib><creatorcontrib>Doeppler, Heike R</creatorcontrib><creatorcontrib>Storz, Peter</creatorcontrib><creatorcontrib>Kurten, Richard C</creatorcontrib><creatorcontrib>Beare, Paul A</creatorcontrib><creatorcontrib>Heinzen, Robert A</creatorcontrib><creatorcontrib>Voth, Daniel E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colonne, Punsiri M</au><au>Winchell, Caylin G</au><au>Graham, Joseph G</au><au>Onyilagha, Frances I</au><au>MacDonald, Laura J</au><au>Doeppler, Heike R</au><au>Storz, Peter</au><au>Kurten, Richard C</au><au>Beare, Paul A</au><au>Heinzen, Robert A</au><au>Voth, Daniel E</au><au>Luo, Zhao-Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vasodilator-Stimulated Phosphoprotein Activity Is Required for Coxiella burnetii Growth in Human Macrophages</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>12</volume><issue>10</issue><spage>e1005915</spage><epage>e1005915</epage><pages>e1005915-e1005915</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Coxiella burnetii is an intracellular bacterial pathogen that causes human Q fever, an acute flu-like illness that can progress to chronic endocarditis and liver and bone infections. Humans are typically infected by aerosol-mediated transmission, and C. burnetii initially targets alveolar macrophages wherein the pathogen replicates in a phagolysosome-like niche known as the parasitophorous vacuole (PV). C. burnetii manipulates host cAMP-dependent protein kinase (PKA) signaling to promote PV formation, cell survival, and bacterial replication. In this study, we identified the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP) as a PKA substrate that is increasingly phosphorylated at S157 and S239 during C. burnetii infection. Avirulent and virulent C. burnetii triggered increased levels of phosphorylated VASP in macrophage-like THP-1 cells and primary human alveolar macrophages, and this event required the Cα subunit of PKA. VASP phosphorylation also required bacterial protein synthesis and secretion of effector proteins via a type IV secretion system, indicating the pathogen actively triggers prolonged VASP phosphorylation. Optimal PV formation and intracellular bacterial replication required VASP activity, as siRNA-mediated depletion of VASP reduced PV size and bacterial growth. Interestingly, ectopic expression of a phospho-mimetic VASP (S239E) mutant protein prevented optimal PV formation, whereas VASP (S157E) mutant expression had no effect. VASP (S239E) expression also prevented trafficking of bead-containing phagosomes to the PV, indicating proper VASP activity is critical for heterotypic fusion events that control PV expansion in macrophages. Finally, expression of dominant negative VASP (S157A) in C. burnetii-infected cells impaired PV formation, confirming importance of the protein for proper infection. This study provides the first evidence of VASP manipulation by an intravacuolar bacterial pathogen via activation of PKA in human macrophages.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27711191</pmid><doi>10.1371/journal.ppat.1005915</doi><orcidid>https://orcid.org/0000-0001-6870-4619</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2016-10, Vol.12 (10), p.e1005915-e1005915
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_1840926016
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Analysis
Bacteriology
Biology and Life Sciences
Cell Adhesion Molecules - metabolism
Colleges & universities
Complications and side effects
Coxiella burnetii
Cyclic AMP-Dependent Protein Kinases - metabolism
Deoxyribonucleic acid
DNA
Endocarditis
Enzyme Activation - physiology
Fever
Funding
Gene Knockdown Techniques
Genomes
Host-Pathogen Interactions - physiology
Humans
Immunoblotting
Immunology
Immunoprecipitation
Infections
Infectious diseases
Kinases
Laboratories
Macrophages
Macrophages, Alveolar - metabolism
Macrophages, Alveolar - microbiology
Medicine and Health Sciences
Microfilament Proteins - metabolism
Microscopy, Confocal
Motility
Pathogenesis
Phosphoproteins - metabolism
Phosphorylation
Proteins
Q Fever - metabolism
Research and Analysis Methods
Rickettsiae
Risk factors
Software
Vasodilator agents
title Vasodilator-Stimulated Phosphoprotein Activity Is Required for Coxiella burnetii Growth in Human Macrophages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vasodilator-Stimulated%20Phosphoprotein%20Activity%20Is%20Required%20for%20Coxiella%20burnetii%20Growth%20in%20Human%20Macrophages&rft.jtitle=PLoS%20pathogens&rft.au=Colonne,%20Punsiri%20M&rft.date=2016-10-01&rft.volume=12&rft.issue=10&rft.spage=e1005915&rft.epage=e1005915&rft.pages=e1005915-e1005915&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1005915&rft_dat=%3Cgale_plos_%3EA472228695%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1840926016&rft_id=info:pmid/27711191&rft_galeid=A472228695&rft_doaj_id=oai_doaj_org_article_44dc92041f5740fcbeb48f5a7e3404c8&rfr_iscdi=true