An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells

The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here, through the sequential in vitro targeting of selected signaling pathways, we have dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-10, Vol.11 (10), p.e0164457-e0164457
Hauptverfasser: Massumi, Mohammad, Pourasgari, Farzaneh, Nalla, Amarnadh, Batchuluun, Battsetseg, Nagy, Kristina, Neely, Eric, Gull, Rida, Nagy, Andras, Wheeler, Michael B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0164457
container_issue 10
container_start_page e0164457
container_title PloS one
container_volume 11
creator Massumi, Mohammad
Pourasgari, Farzaneh
Nalla, Amarnadh
Batchuluun, Battsetseg
Nagy, Kristina
Neely, Eric
Gull, Rida
Nagy, Andras
Wheeler, Michael B
description The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here, through the sequential in vitro targeting of selected signaling pathways, we have developed an abbreviated five-stage protocol (25-30 days) to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed that Geltrex, as an extracellular matrix, could support the generation of ES-DBCs more efficiently than that of the previously described culture systems. The activation of FGF and Retinoic Acid along with the inhibition of BMP, SHH and TGF-beta led to the generation of 75% NKX6.1+/NGN3+ Endocrine Progenitors. The inhibition of Notch and tyrosine kinase receptor AXL, and the treatment with Exendin-4 and T3 in the final stage resulted in 35% mono-hormonal insulin positive cells, 1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally, ES-DBCs were responsive to high glucose in static incubation and perifusion studies, and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux analyses using Seahorse demonstrated that the ES-DBCs could efficiently metabolize glucose and generate intracellular signals to trigger insulin secretion. In conclusion, targeting selected signaling pathways for 25-30 days was sufficient to generate ES-DBCs in vitro. The ability of ES-DBCs to secrete insulin in response to glucose renders them a promising model for the in vitro screening of drugs, small molecules or genes that may have potential to influence beta-cell function.
doi_str_mv 10.1371/journal.pone.0164457
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1830058982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A471884581</galeid><doaj_id>oai_doaj_org_article_1e648645e3a54055abc25b09ec2a577a</doaj_id><sourcerecordid>A471884581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c791t-4a6be8fa90dc61b2f7f38aeedebf3e469a097c914be63c27fe4b0887981d8b463</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBYQkJwkRInTuzcTCplH5UqDTHYreU4J61LYhfbqdi_x-m6qUG7WHwR6-Q5r0_e4xNFb3EywRnFX9amt1q0k43RMElwQUhOn0XHuMzSuEiT7PnB_ih65dw6SfKMFcXL6CilNA8PPY7MVKNpVVnYKuGhRt-t8UaaFjXGorlGN8pbgy5AgxVeGY1Mg857LYe9aNFl3wmNzrrK3hqtJLr20KEZtG38DazaBsGv4EW8UL9hF3avoxeNaB282b9Pol_nZz9nl_Hi6mI-my5iSUvsYyKKClgjyqSWBa7ShjYZEwA1VE0GpChFUlJZYlJBkcmUNkCqhDFaMlyzihTZSfT-TnfTGsf3XjmOWRZcYCVLAzG_I2oj1nxjVSfsLTdC8V3A2CUX1ivZAsdQEFaQHDKRkyTPRSXTvEpKkKnIKRVB63R_Wl91UEvQ3op2JDr-otWKL82W50nB6K6YT3sBa_704DzvlJPBMKHB9Lu6aRa6RvBT0JwQFvwJ6If_0MeN2FNLEf5V6caEEuUgyqeEYsZIzoZjJ49QYdXQKRnuYKNCfJTweZQQGA9__VL0zvH59Y-ns1c3Y_bjAbsC0fqVM20_3Eg3BskdKK1xzkLz0A-c8GGE7t3gwwjx_QiFtHeHvXxIup-Z7B9w3RW0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830058982</pqid></control><display><type>article</type><title>An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Massumi, Mohammad ; Pourasgari, Farzaneh ; Nalla, Amarnadh ; Batchuluun, Battsetseg ; Nagy, Kristina ; Neely, Eric ; Gull, Rida ; Nagy, Andras ; Wheeler, Michael B</creator><contributor>Maedler, Kathrin</contributor><creatorcontrib>Massumi, Mohammad ; Pourasgari, Farzaneh ; Nalla, Amarnadh ; Batchuluun, Battsetseg ; Nagy, Kristina ; Neely, Eric ; Gull, Rida ; Nagy, Andras ; Wheeler, Michael B ; Maedler, Kathrin</creatorcontrib><description>The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here, through the sequential in vitro targeting of selected signaling pathways, we have developed an abbreviated five-stage protocol (25-30 days) to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed that Geltrex, as an extracellular matrix, could support the generation of ES-DBCs more efficiently than that of the previously described culture systems. The activation of FGF and Retinoic Acid along with the inhibition of BMP, SHH and TGF-beta led to the generation of 75% NKX6.1+/NGN3+ Endocrine Progenitors. The inhibition of Notch and tyrosine kinase receptor AXL, and the treatment with Exendin-4 and T3 in the final stage resulted in 35% mono-hormonal insulin positive cells, 1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally, ES-DBCs were responsive to high glucose in static incubation and perifusion studies, and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux analyses using Seahorse demonstrated that the ES-DBCs could efficiently metabolize glucose and generate intracellular signals to trigger insulin secretion. In conclusion, targeting selected signaling pathways for 25-30 days was sufficient to generate ES-DBCs in vitro. The ability of ES-DBCs to secrete insulin in response to glucose renders them a promising model for the in vitro screening of drugs, small molecules or genes that may have potential to influence beta-cell function.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0164457</identifier><identifier>PMID: 27755557</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Axl protein ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Beta cells ; Biology and Life Sciences ; Bone morphogenetic proteins ; Cell culture ; Cell Differentiation ; Cells, Cultured ; Diabetes mellitus ; Diabetes mellitus (insulin dependent) ; Diabetes therapy ; Drug screening ; Embryonic stem cells ; Endoderm - cytology ; Endoderm - metabolism ; Extracellular matrix ; Glucagon ; Glucose ; Glucose - pharmacology ; Glucose metabolism ; Homeodomain Proteins - metabolism ; Human Embryonic Stem Cells - cytology ; Human Embryonic Stem Cells - drug effects ; Human Embryonic Stem Cells - metabolism ; Humans ; Incubation ; Inhibition ; Insulin ; Insulin - metabolism ; Insulin secretion ; Insulin-Secreting Cells - cytology ; Insulin-Secreting Cells - drug effects ; Insulin-Secreting Cells - metabolism ; Intracellular signalling ; Laboratories ; Medicine and Health Sciences ; Metabolic flux ; Metabolic Flux Analysis ; Microscopy, Fluorescence ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Nerve Tissue Proteins - metabolism ; Nkx6.1 protein ; Pancreas ; Peptides - pharmacology ; Physical Sciences ; Pluripotency ; Protein-tyrosine kinase receptors ; Research and Analysis Methods ; Retinoic acid ; Rodents ; Secretion ; Signal transduction ; Stem cell transplantation ; Stem cells ; Transcription Factors - metabolism ; Transforming Growth Factor beta - antagonists &amp; inhibitors ; Transforming Growth Factor beta - metabolism ; Transforming growth factor-b ; Transforming growth factors ; Tretinoin - pharmacology ; Type 1 diabetes ; Tyrosine ; Venoms - pharmacology</subject><ispartof>PloS one, 2016-10, Vol.11 (10), p.e0164457-e0164457</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Massumi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Massumi et al 2016 Massumi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c791t-4a6be8fa90dc61b2f7f38aeedebf3e469a097c914be63c27fe4b0887981d8b463</citedby><cites>FETCH-LOGICAL-c791t-4a6be8fa90dc61b2f7f38aeedebf3e469a097c914be63c27fe4b0887981d8b463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5068782/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5068782/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27755557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Maedler, Kathrin</contributor><creatorcontrib>Massumi, Mohammad</creatorcontrib><creatorcontrib>Pourasgari, Farzaneh</creatorcontrib><creatorcontrib>Nalla, Amarnadh</creatorcontrib><creatorcontrib>Batchuluun, Battsetseg</creatorcontrib><creatorcontrib>Nagy, Kristina</creatorcontrib><creatorcontrib>Neely, Eric</creatorcontrib><creatorcontrib>Gull, Rida</creatorcontrib><creatorcontrib>Nagy, Andras</creatorcontrib><creatorcontrib>Wheeler, Michael B</creatorcontrib><title>An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here, through the sequential in vitro targeting of selected signaling pathways, we have developed an abbreviated five-stage protocol (25-30 days) to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed that Geltrex, as an extracellular matrix, could support the generation of ES-DBCs more efficiently than that of the previously described culture systems. The activation of FGF and Retinoic Acid along with the inhibition of BMP, SHH and TGF-beta led to the generation of 75% NKX6.1+/NGN3+ Endocrine Progenitors. The inhibition of Notch and tyrosine kinase receptor AXL, and the treatment with Exendin-4 and T3 in the final stage resulted in 35% mono-hormonal insulin positive cells, 1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally, ES-DBCs were responsive to high glucose in static incubation and perifusion studies, and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux analyses using Seahorse demonstrated that the ES-DBCs could efficiently metabolize glucose and generate intracellular signals to trigger insulin secretion. In conclusion, targeting selected signaling pathways for 25-30 days was sufficient to generate ES-DBCs in vitro. The ability of ES-DBCs to secrete insulin in response to glucose renders them a promising model for the in vitro screening of drugs, small molecules or genes that may have potential to influence beta-cell function.</description><subject>Analysis</subject><subject>Animals</subject><subject>Axl protein</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Beta cells</subject><subject>Biology and Life Sciences</subject><subject>Bone morphogenetic proteins</subject><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>Cells, Cultured</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>Diabetes therapy</subject><subject>Drug screening</subject><subject>Embryonic stem cells</subject><subject>Endoderm - cytology</subject><subject>Endoderm - metabolism</subject><subject>Extracellular matrix</subject><subject>Glucagon</subject><subject>Glucose</subject><subject>Glucose - pharmacology</subject><subject>Glucose metabolism</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Human Embryonic Stem Cells - cytology</subject><subject>Human Embryonic Stem Cells - drug effects</subject><subject>Human Embryonic Stem Cells - metabolism</subject><subject>Humans</subject><subject>Incubation</subject><subject>Inhibition</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin secretion</subject><subject>Insulin-Secreting Cells - cytology</subject><subject>Insulin-Secreting Cells - drug effects</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Intracellular signalling</subject><subject>Laboratories</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic flux</subject><subject>Metabolic Flux Analysis</subject><subject>Microscopy, Fluorescence</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Nkx6.1 protein</subject><subject>Pancreas</subject><subject>Peptides - pharmacology</subject><subject>Physical Sciences</subject><subject>Pluripotency</subject><subject>Protein-tyrosine kinase receptors</subject><subject>Research and Analysis Methods</subject><subject>Retinoic acid</subject><subject>Rodents</subject><subject>Secretion</subject><subject>Signal transduction</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Transcription Factors - metabolism</subject><subject>Transforming Growth Factor beta - antagonists &amp; inhibitors</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Transforming growth factor-b</subject><subject>Transforming growth factors</subject><subject>Tretinoin - pharmacology</subject><subject>Type 1 diabetes</subject><subject>Tyrosine</subject><subject>Venoms - pharmacology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBYQkJwkRInTuzcTCplH5UqDTHYreU4J61LYhfbqdi_x-m6qUG7WHwR6-Q5r0_e4xNFb3EywRnFX9amt1q0k43RMElwQUhOn0XHuMzSuEiT7PnB_ih65dw6SfKMFcXL6CilNA8PPY7MVKNpVVnYKuGhRt-t8UaaFjXGorlGN8pbgy5AgxVeGY1Mg857LYe9aNFl3wmNzrrK3hqtJLr20KEZtG38DazaBsGv4EW8UL9hF3avoxeNaB282b9Pol_nZz9nl_Hi6mI-my5iSUvsYyKKClgjyqSWBa7ShjYZEwA1VE0GpChFUlJZYlJBkcmUNkCqhDFaMlyzihTZSfT-TnfTGsf3XjmOWRZcYCVLAzG_I2oj1nxjVSfsLTdC8V3A2CUX1ivZAsdQEFaQHDKRkyTPRSXTvEpKkKnIKRVB63R_Wl91UEvQ3op2JDr-otWKL82W50nB6K6YT3sBa_704DzvlJPBMKHB9Lu6aRa6RvBT0JwQFvwJ6If_0MeN2FNLEf5V6caEEuUgyqeEYsZIzoZjJ49QYdXQKRnuYKNCfJTweZQQGA9__VL0zvH59Y-ns1c3Y_bjAbsC0fqVM20_3Eg3BskdKK1xzkLz0A-c8GGE7t3gwwjx_QiFtHeHvXxIup-Z7B9w3RW0</recordid><startdate>20161018</startdate><enddate>20161018</enddate><creator>Massumi, Mohammad</creator><creator>Pourasgari, Farzaneh</creator><creator>Nalla, Amarnadh</creator><creator>Batchuluun, Battsetseg</creator><creator>Nagy, Kristina</creator><creator>Neely, Eric</creator><creator>Gull, Rida</creator><creator>Nagy, Andras</creator><creator>Wheeler, Michael B</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20161018</creationdate><title>An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells</title><author>Massumi, Mohammad ; Pourasgari, Farzaneh ; Nalla, Amarnadh ; Batchuluun, Battsetseg ; Nagy, Kristina ; Neely, Eric ; Gull, Rida ; Nagy, Andras ; Wheeler, Michael B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c791t-4a6be8fa90dc61b2f7f38aeedebf3e469a097c914be63c27fe4b0887981d8b463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Axl protein</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Beta cells</topic><topic>Biology and Life Sciences</topic><topic>Bone morphogenetic proteins</topic><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>Cells, Cultured</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>Diabetes therapy</topic><topic>Drug screening</topic><topic>Embryonic stem cells</topic><topic>Endoderm - cytology</topic><topic>Endoderm - metabolism</topic><topic>Extracellular matrix</topic><topic>Glucagon</topic><topic>Glucose</topic><topic>Glucose - pharmacology</topic><topic>Glucose metabolism</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Human Embryonic Stem Cells - cytology</topic><topic>Human Embryonic Stem Cells - drug effects</topic><topic>Human Embryonic Stem Cells - metabolism</topic><topic>Humans</topic><topic>Incubation</topic><topic>Inhibition</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin secretion</topic><topic>Insulin-Secreting Cells - cytology</topic><topic>Insulin-Secreting Cells - drug effects</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Intracellular signalling</topic><topic>Laboratories</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic flux</topic><topic>Metabolic Flux Analysis</topic><topic>Microscopy, Fluorescence</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Nkx6.1 protein</topic><topic>Pancreas</topic><topic>Peptides - pharmacology</topic><topic>Physical Sciences</topic><topic>Pluripotency</topic><topic>Protein-tyrosine kinase receptors</topic><topic>Research and Analysis Methods</topic><topic>Retinoic acid</topic><topic>Rodents</topic><topic>Secretion</topic><topic>Signal transduction</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Transcription Factors - metabolism</topic><topic>Transforming Growth Factor beta - antagonists &amp; inhibitors</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Transforming growth factor-b</topic><topic>Transforming growth factors</topic><topic>Tretinoin - pharmacology</topic><topic>Type 1 diabetes</topic><topic>Tyrosine</topic><topic>Venoms - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Massumi, Mohammad</creatorcontrib><creatorcontrib>Pourasgari, Farzaneh</creatorcontrib><creatorcontrib>Nalla, Amarnadh</creatorcontrib><creatorcontrib>Batchuluun, Battsetseg</creatorcontrib><creatorcontrib>Nagy, Kristina</creatorcontrib><creatorcontrib>Neely, Eric</creatorcontrib><creatorcontrib>Gull, Rida</creatorcontrib><creatorcontrib>Nagy, Andras</creatorcontrib><creatorcontrib>Wheeler, Michael B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Massumi, Mohammad</au><au>Pourasgari, Farzaneh</au><au>Nalla, Amarnadh</au><au>Batchuluun, Battsetseg</au><au>Nagy, Kristina</au><au>Neely, Eric</au><au>Gull, Rida</au><au>Nagy, Andras</au><au>Wheeler, Michael B</au><au>Maedler, Kathrin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-10-18</date><risdate>2016</risdate><volume>11</volume><issue>10</issue><spage>e0164457</spage><epage>e0164457</epage><pages>e0164457-e0164457</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here, through the sequential in vitro targeting of selected signaling pathways, we have developed an abbreviated five-stage protocol (25-30 days) to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed that Geltrex, as an extracellular matrix, could support the generation of ES-DBCs more efficiently than that of the previously described culture systems. The activation of FGF and Retinoic Acid along with the inhibition of BMP, SHH and TGF-beta led to the generation of 75% NKX6.1+/NGN3+ Endocrine Progenitors. The inhibition of Notch and tyrosine kinase receptor AXL, and the treatment with Exendin-4 and T3 in the final stage resulted in 35% mono-hormonal insulin positive cells, 1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally, ES-DBCs were responsive to high glucose in static incubation and perifusion studies, and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux analyses using Seahorse demonstrated that the ES-DBCs could efficiently metabolize glucose and generate intracellular signals to trigger insulin secretion. In conclusion, targeting selected signaling pathways for 25-30 days was sufficient to generate ES-DBCs in vitro. The ability of ES-DBCs to secrete insulin in response to glucose renders them a promising model for the in vitro screening of drugs, small molecules or genes that may have potential to influence beta-cell function.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27755557</pmid><doi>10.1371/journal.pone.0164457</doi><tpages>e0164457</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-10, Vol.11 (10), p.e0164457-e0164457
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1830058982
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Animals
Axl protein
Basic Helix-Loop-Helix Transcription Factors - metabolism
Beta cells
Biology and Life Sciences
Bone morphogenetic proteins
Cell culture
Cell Differentiation
Cells, Cultured
Diabetes mellitus
Diabetes mellitus (insulin dependent)
Diabetes therapy
Drug screening
Embryonic stem cells
Endoderm - cytology
Endoderm - metabolism
Extracellular matrix
Glucagon
Glucose
Glucose - pharmacology
Glucose metabolism
Homeodomain Proteins - metabolism
Human Embryonic Stem Cells - cytology
Human Embryonic Stem Cells - drug effects
Human Embryonic Stem Cells - metabolism
Humans
Incubation
Inhibition
Insulin
Insulin - metabolism
Insulin secretion
Insulin-Secreting Cells - cytology
Insulin-Secreting Cells - drug effects
Insulin-Secreting Cells - metabolism
Intracellular signalling
Laboratories
Medicine and Health Sciences
Metabolic flux
Metabolic Flux Analysis
Microscopy, Fluorescence
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Nerve Tissue Proteins - metabolism
Nkx6.1 protein
Pancreas
Peptides - pharmacology
Physical Sciences
Pluripotency
Protein-tyrosine kinase receptors
Research and Analysis Methods
Retinoic acid
Rodents
Secretion
Signal transduction
Stem cell transplantation
Stem cells
Transcription Factors - metabolism
Transforming Growth Factor beta - antagonists & inhibitors
Transforming Growth Factor beta - metabolism
Transforming growth factor-b
Transforming growth factors
Tretinoin - pharmacology
Type 1 diabetes
Tyrosine
Venoms - pharmacology
title An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Abbreviated%20Protocol%20for%20In%20Vitro%20Generation%20of%20Functional%20Human%20Embryonic%20Stem%20Cell-Derived%20Beta-Like%20Cells&rft.jtitle=PloS%20one&rft.au=Massumi,%20Mohammad&rft.date=2016-10-18&rft.volume=11&rft.issue=10&rft.spage=e0164457&rft.epage=e0164457&rft.pages=e0164457-e0164457&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0164457&rft_dat=%3Cgale_plos_%3EA471884581%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830058982&rft_id=info:pmid/27755557&rft_galeid=A471884581&rft_doaj_id=oai_doaj_org_article_1e648645e3a54055abc25b09ec2a577a&rfr_iscdi=true