DNA Replication Control Is Linked to Genomic Positioning of Control Regions in Escherichia coli

Chromosome replication in Escherichia coli is in part controlled by three non-coding genomic sequences, DARS1, DARS2, and datA that modulate the activity of the initiator protein DnaA. The relative distance from oriC to the non-coding regions are conserved among E. coli species, despite large variat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2016-09, Vol.12 (9), p.e1006286-e1006286
Hauptverfasser: Frimodt-Møller, Jakob, Charbon, Godefroid, Krogfelt, Karen A, Løbner-Olesen, Anders
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chromosome replication in Escherichia coli is in part controlled by three non-coding genomic sequences, DARS1, DARS2, and datA that modulate the activity of the initiator protein DnaA. The relative distance from oriC to the non-coding regions are conserved among E. coli species, despite large variations in genome size. Here we use a combination of i) site directed translocation of each region to new positions on the bacterial chromosome and ii) random transposon mediated translocation followed by culture evolution, to show genetic evidence for the importance of position. Here we provide evidence that the genomic locations of these regulatory sequences are important for cell cycle control and bacterial fitness. In addition, our work shows that the functionally redundant DARS1 and DARS2 regions play different roles in replication control. DARS1 is mainly involved in maintaining the origin concentration, whether DARS2 is also involved in maintaining single cell synchrony.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1006286