Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics
Small molecules that correct the folding defects and enhance surface localization of the F508del mutation in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) comprise an important therapeutic strategy for cystic fibrosis lung disease. However, compounds that rescue the F508del mutant p...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-10, Vol.11 (10), p.e0163615-e0163615 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0163615 |
---|---|
container_issue | 10 |
container_start_page | e0163615 |
container_title | PloS one |
container_volume | 11 |
creator | Chung, W Joon Goeckeler-Fried, Jennifer L Havasi, Viktoria Chiang, Annette Rowe, Steven M Plyler, Zackery E Hong, Jeong S Mazur, Marina Piazza, Gary A Keeton, Adam B White, E Lucile Rasmussen, Lynn Weissman, Allan M Denny, R Aldrin Brodsky, Jeffrey L Sorscher, Eric J |
description | Small molecules that correct the folding defects and enhance surface localization of the F508del mutation in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) comprise an important therapeutic strategy for cystic fibrosis lung disease. However, compounds that rescue the F508del mutant protein to wild type (WT) levels have not been identified. In this report, we consider obstacles to obtaining robust and therapeutically relevant levels of F508del CFTR. For example, markedly diminished steady state amounts of F508del CFTR compared to WT CFTR are present in recombinant bronchial epithelial cell lines, even when much higher levels of mutant transcript are present. In human primary airway cells, the paucity of Band B F508del is even more pronounced, although F508del and WT mRNA concentrations are comparable. Therefore, to augment levels of "repairable" F508del CFTR and identify small molecules that then correct this pool, we developed compound library screening protocols based on automated protein detection. First, cell-based imaging measurements were used to semi-quantitatively estimate distribution of F508del CFTR by high content analysis of two-dimensional images. We evaluated ~2,000 known bioactive compounds from the NIH Roadmap Molecular Libraries Small Molecule Repository in a pilot screen and identified agents that increase the F508del protein pool. Second, we analyzed ~10,000 compounds representing diverse chemical scaffolds for effects on total CFTR expression using a multi-plate fluorescence protocol and describe compounds that promote F508del maturation. Together, our findings demonstrate proof of principle that agents identified in this fashion can augment the level of endoplasmic reticulum (ER) resident "Band B" F508del CFTR suitable for pharmacologic correction. As further evidence in support of this strategy, PYR-41-a compound that inhibits the E1 ubiquitin activating enzyme-was shown to synergistically enhance F508del rescue by C18, a small molecule corrector. Our combined results indicate that increasing the levels of ER-localized CFTR available for repair provides a novel route to correct F508del CFTR. |
doi_str_mv | 10.1371/journal.pone.0163615 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1828170706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A471860582</galeid><doaj_id>oai_doaj_org_article_5aa68f888e6b4637be0734ba8a6e6965</doaj_id><sourcerecordid>A471860582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-949ab318ab33d8d7a5465aee075ac1be67e32870da74932c4b0ed051c4e2fd683</originalsourceid><addsrcrecordid>eNqNk99u0zAUxiMEYmPwBggsISG4aLHjxHZvkKZqHZWGhrbBrXXinLaZnLizE8QejnfjdOumFe1iihRH9u98_nL-ZNlbwcdCavHlMgyxAz9ehw7HXCipRPks2xcTmY9UzuXzB9972auULjkvpVHqZbaXay1zJeR-9nfeuYiQmm7J-hWyo64Oaw-pbRw7w75xgx9a9iMEz8LihpiV3NTo2aH36PFud3qdCGazpoohNYldROhSi21FK52Grh5cD51DUl0OHvoQ2QlCnVgf2DE56DGyWfD1xsg0xIiub0LHqmt23oL37HvwSGaQXawwwhoHui69zl4swCd8s10Psp-zo4vpt9HJ6fF8engycjov-9GkmEAlhaGXrE2toSxUCYhcl-BEhUqjzI3mNeiCUuaKimPNS-EKzBe1MvIge3-ru_Yh2W3mkxUmN0JzzRUR81uiDnBp17FpIV7bAI292QhxaSGSZY-2BFBmYYxBVRVK6op8yKICAwrVRJWk9XV721C1WDvs-gh-R3T3pGtWdhl-25JTTfWEBD5tBWK4GjD1tm2SQ--pFmHY-JZU_4lU8iloWXCVi4LQD_-hjydiSy2B_rXpFoEsuo2oPSy0MIqXJidq_AhFT43UedTRi4b2dwI-7wQQ0-OffglDSnZ-fvZ09vTXLvvxAbtC8P0qBT9smi_tgsUt6KjBU8TFfT0Et5uBvMuG3Qyk3Q4khb17WMv7oLsJlP8A6ocyTg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1828170706</pqid></control><display><type>article</type><title>Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Chung, W Joon ; Goeckeler-Fried, Jennifer L ; Havasi, Viktoria ; Chiang, Annette ; Rowe, Steven M ; Plyler, Zackery E ; Hong, Jeong S ; Mazur, Marina ; Piazza, Gary A ; Keeton, Adam B ; White, E Lucile ; Rasmussen, Lynn ; Weissman, Allan M ; Denny, R Aldrin ; Brodsky, Jeffrey L ; Sorscher, Eric J</creator><creatorcontrib>Chung, W Joon ; Goeckeler-Fried, Jennifer L ; Havasi, Viktoria ; Chiang, Annette ; Rowe, Steven M ; Plyler, Zackery E ; Hong, Jeong S ; Mazur, Marina ; Piazza, Gary A ; Keeton, Adam B ; White, E Lucile ; Rasmussen, Lynn ; Weissman, Allan M ; Denny, R Aldrin ; Brodsky, Jeffrey L ; Sorscher, Eric J</creatorcontrib><description>Small molecules that correct the folding defects and enhance surface localization of the F508del mutation in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) comprise an important therapeutic strategy for cystic fibrosis lung disease. However, compounds that rescue the F508del mutant protein to wild type (WT) levels have not been identified. In this report, we consider obstacles to obtaining robust and therapeutically relevant levels of F508del CFTR. For example, markedly diminished steady state amounts of F508del CFTR compared to WT CFTR are present in recombinant bronchial epithelial cell lines, even when much higher levels of mutant transcript are present. In human primary airway cells, the paucity of Band B F508del is even more pronounced, although F508del and WT mRNA concentrations are comparable. Therefore, to augment levels of "repairable" F508del CFTR and identify small molecules that then correct this pool, we developed compound library screening protocols based on automated protein detection. First, cell-based imaging measurements were used to semi-quantitatively estimate distribution of F508del CFTR by high content analysis of two-dimensional images. We evaluated ~2,000 known bioactive compounds from the NIH Roadmap Molecular Libraries Small Molecule Repository in a pilot screen and identified agents that increase the F508del protein pool. Second, we analyzed ~10,000 compounds representing diverse chemical scaffolds for effects on total CFTR expression using a multi-plate fluorescence protocol and describe compounds that promote F508del maturation. Together, our findings demonstrate proof of principle that agents identified in this fashion can augment the level of endoplasmic reticulum (ER) resident "Band B" F508del CFTR suitable for pharmacologic correction. As further evidence in support of this strategy, PYR-41-a compound that inhibits the E1 ubiquitin activating enzyme-was shown to synergistically enhance F508del rescue by C18, a small molecule corrector. Our combined results indicate that increasing the levels of ER-localized CFTR available for repair provides a novel route to correct F508del CFTR.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0163615</identifier><identifier>PMID: 27732613</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alleles ; Benzoates - chemistry ; Benzoates - pharmacology ; Bioactive compounds ; Biology and Life Sciences ; Cell culture ; Cell lines ; Cells, Cultured ; Chemical compounds ; Content analysis ; Cystic fibrosis ; Cystic Fibrosis - genetics ; Cystic Fibrosis - pathology ; Cystic Fibrosis Transmembrane Conductance Regulator - chemistry ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - metabolism ; Defects ; Endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Epithelial cells ; Fluorescence ; Folding ; Furans - chemistry ; Furans - pharmacology ; Gene Deletion ; Genetic aspects ; Health aspects ; HEK293 Cells ; HeLa Cells ; High-Throughput Screening Assays ; Humans ; Hydroxamic Acids - chemistry ; Hydroxamic Acids - pharmacology ; Localization ; Lung diseases ; Medical screening ; Medicine and Health Sciences ; Microscopy, Fluorescence ; Mutation ; Pharmacology ; Physical Sciences ; Protein Folding ; Protein Structure, Tertiary ; Proteins ; Pyrazoles - chemistry ; Pyrazoles - pharmacology ; Research and Analysis Methods ; Respiratory tract ; RNA ; RNA, Messenger - metabolism ; Rodents ; Scaffolds ; Small Molecule Libraries - chemistry ; Small Molecule Libraries - pharmacology ; Transcription ; Two dimensional analysis ; Ubiquitin ; Ubiquitination - drug effects</subject><ispartof>PloS one, 2016-10, Vol.11 (10), p.e0163615-e0163615</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Chung et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Chung et al 2016 Chung et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-949ab318ab33d8d7a5465aee075ac1be67e32870da74932c4b0ed051c4e2fd683</citedby><cites>FETCH-LOGICAL-c725t-949ab318ab33d8d7a5465aee075ac1be67e32870da74932c4b0ed051c4e2fd683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5061379/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5061379/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27732613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, W Joon</creatorcontrib><creatorcontrib>Goeckeler-Fried, Jennifer L</creatorcontrib><creatorcontrib>Havasi, Viktoria</creatorcontrib><creatorcontrib>Chiang, Annette</creatorcontrib><creatorcontrib>Rowe, Steven M</creatorcontrib><creatorcontrib>Plyler, Zackery E</creatorcontrib><creatorcontrib>Hong, Jeong S</creatorcontrib><creatorcontrib>Mazur, Marina</creatorcontrib><creatorcontrib>Piazza, Gary A</creatorcontrib><creatorcontrib>Keeton, Adam B</creatorcontrib><creatorcontrib>White, E Lucile</creatorcontrib><creatorcontrib>Rasmussen, Lynn</creatorcontrib><creatorcontrib>Weissman, Allan M</creatorcontrib><creatorcontrib>Denny, R Aldrin</creatorcontrib><creatorcontrib>Brodsky, Jeffrey L</creatorcontrib><creatorcontrib>Sorscher, Eric J</creatorcontrib><title>Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Small molecules that correct the folding defects and enhance surface localization of the F508del mutation in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) comprise an important therapeutic strategy for cystic fibrosis lung disease. However, compounds that rescue the F508del mutant protein to wild type (WT) levels have not been identified. In this report, we consider obstacles to obtaining robust and therapeutically relevant levels of F508del CFTR. For example, markedly diminished steady state amounts of F508del CFTR compared to WT CFTR are present in recombinant bronchial epithelial cell lines, even when much higher levels of mutant transcript are present. In human primary airway cells, the paucity of Band B F508del is even more pronounced, although F508del and WT mRNA concentrations are comparable. Therefore, to augment levels of "repairable" F508del CFTR and identify small molecules that then correct this pool, we developed compound library screening protocols based on automated protein detection. First, cell-based imaging measurements were used to semi-quantitatively estimate distribution of F508del CFTR by high content analysis of two-dimensional images. We evaluated ~2,000 known bioactive compounds from the NIH Roadmap Molecular Libraries Small Molecule Repository in a pilot screen and identified agents that increase the F508del protein pool. Second, we analyzed ~10,000 compounds representing diverse chemical scaffolds for effects on total CFTR expression using a multi-plate fluorescence protocol and describe compounds that promote F508del maturation. Together, our findings demonstrate proof of principle that agents identified in this fashion can augment the level of endoplasmic reticulum (ER) resident "Band B" F508del CFTR suitable for pharmacologic correction. As further evidence in support of this strategy, PYR-41-a compound that inhibits the E1 ubiquitin activating enzyme-was shown to synergistically enhance F508del rescue by C18, a small molecule corrector. Our combined results indicate that increasing the levels of ER-localized CFTR available for repair provides a novel route to correct F508del CFTR.</description><subject>Alleles</subject><subject>Benzoates - chemistry</subject><subject>Benzoates - pharmacology</subject><subject>Bioactive compounds</subject><subject>Biology and Life Sciences</subject><subject>Cell culture</subject><subject>Cell lines</subject><subject>Cells, Cultured</subject><subject>Chemical compounds</subject><subject>Content analysis</subject><subject>Cystic fibrosis</subject><subject>Cystic Fibrosis - genetics</subject><subject>Cystic Fibrosis - pathology</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - chemistry</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</subject><subject>Defects</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Epithelial cells</subject><subject>Fluorescence</subject><subject>Folding</subject><subject>Furans - chemistry</subject><subject>Furans - pharmacology</subject><subject>Gene Deletion</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>High-Throughput Screening Assays</subject><subject>Humans</subject><subject>Hydroxamic Acids - chemistry</subject><subject>Hydroxamic Acids - pharmacology</subject><subject>Localization</subject><subject>Lung diseases</subject><subject>Medical screening</subject><subject>Medicine and Health Sciences</subject><subject>Microscopy, Fluorescence</subject><subject>Mutation</subject><subject>Pharmacology</subject><subject>Physical Sciences</subject><subject>Protein Folding</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Pyrazoles - chemistry</subject><subject>Pyrazoles - pharmacology</subject><subject>Research and Analysis Methods</subject><subject>Respiratory tract</subject><subject>RNA</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>Scaffolds</subject><subject>Small Molecule Libraries - chemistry</subject><subject>Small Molecule Libraries - pharmacology</subject><subject>Transcription</subject><subject>Two dimensional analysis</subject><subject>Ubiquitin</subject><subject>Ubiquitination - drug effects</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99u0zAUxiMEYmPwBggsISG4aLHjxHZvkKZqHZWGhrbBrXXinLaZnLizE8QejnfjdOumFe1iihRH9u98_nL-ZNlbwcdCavHlMgyxAz9ehw7HXCipRPks2xcTmY9UzuXzB9972auULjkvpVHqZbaXay1zJeR-9nfeuYiQmm7J-hWyo64Oaw-pbRw7w75xgx9a9iMEz8LihpiV3NTo2aH36PFud3qdCGazpoohNYldROhSi21FK52Grh5cD51DUl0OHvoQ2QlCnVgf2DE56DGyWfD1xsg0xIiub0LHqmt23oL37HvwSGaQXawwwhoHui69zl4swCd8s10Psp-zo4vpt9HJ6fF8engycjov-9GkmEAlhaGXrE2toSxUCYhcl-BEhUqjzI3mNeiCUuaKimPNS-EKzBe1MvIge3-ru_Yh2W3mkxUmN0JzzRUR81uiDnBp17FpIV7bAI292QhxaSGSZY-2BFBmYYxBVRVK6op8yKICAwrVRJWk9XV721C1WDvs-gh-R3T3pGtWdhl-25JTTfWEBD5tBWK4GjD1tm2SQ--pFmHY-JZU_4lU8iloWXCVi4LQD_-hjydiSy2B_rXpFoEsuo2oPSy0MIqXJidq_AhFT43UedTRi4b2dwI-7wQQ0-OffglDSnZ-fvZ09vTXLvvxAbtC8P0qBT9smi_tgsUt6KjBU8TFfT0Et5uBvMuG3Qyk3Q4khb17WMv7oLsJlP8A6ocyTg</recordid><startdate>20161012</startdate><enddate>20161012</enddate><creator>Chung, W Joon</creator><creator>Goeckeler-Fried, Jennifer L</creator><creator>Havasi, Viktoria</creator><creator>Chiang, Annette</creator><creator>Rowe, Steven M</creator><creator>Plyler, Zackery E</creator><creator>Hong, Jeong S</creator><creator>Mazur, Marina</creator><creator>Piazza, Gary A</creator><creator>Keeton, Adam B</creator><creator>White, E Lucile</creator><creator>Rasmussen, Lynn</creator><creator>Weissman, Allan M</creator><creator>Denny, R Aldrin</creator><creator>Brodsky, Jeffrey L</creator><creator>Sorscher, Eric J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20161012</creationdate><title>Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics</title><author>Chung, W Joon ; Goeckeler-Fried, Jennifer L ; Havasi, Viktoria ; Chiang, Annette ; Rowe, Steven M ; Plyler, Zackery E ; Hong, Jeong S ; Mazur, Marina ; Piazza, Gary A ; Keeton, Adam B ; White, E Lucile ; Rasmussen, Lynn ; Weissman, Allan M ; Denny, R Aldrin ; Brodsky, Jeffrey L ; Sorscher, Eric J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-949ab318ab33d8d7a5465aee075ac1be67e32870da74932c4b0ed051c4e2fd683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alleles</topic><topic>Benzoates - chemistry</topic><topic>Benzoates - pharmacology</topic><topic>Bioactive compounds</topic><topic>Biology and Life Sciences</topic><topic>Cell culture</topic><topic>Cell lines</topic><topic>Cells, Cultured</topic><topic>Chemical compounds</topic><topic>Content analysis</topic><topic>Cystic fibrosis</topic><topic>Cystic Fibrosis - genetics</topic><topic>Cystic Fibrosis - pathology</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - chemistry</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</topic><topic>Defects</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Epithelial cells</topic><topic>Fluorescence</topic><topic>Folding</topic><topic>Furans - chemistry</topic><topic>Furans - pharmacology</topic><topic>Gene Deletion</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>High-Throughput Screening Assays</topic><topic>Humans</topic><topic>Hydroxamic Acids - chemistry</topic><topic>Hydroxamic Acids - pharmacology</topic><topic>Localization</topic><topic>Lung diseases</topic><topic>Medical screening</topic><topic>Medicine and Health Sciences</topic><topic>Microscopy, Fluorescence</topic><topic>Mutation</topic><topic>Pharmacology</topic><topic>Physical Sciences</topic><topic>Protein Folding</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Pyrazoles - chemistry</topic><topic>Pyrazoles - pharmacology</topic><topic>Research and Analysis Methods</topic><topic>Respiratory tract</topic><topic>RNA</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>Scaffolds</topic><topic>Small Molecule Libraries - chemistry</topic><topic>Small Molecule Libraries - pharmacology</topic><topic>Transcription</topic><topic>Two dimensional analysis</topic><topic>Ubiquitin</topic><topic>Ubiquitination - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, W Joon</creatorcontrib><creatorcontrib>Goeckeler-Fried, Jennifer L</creatorcontrib><creatorcontrib>Havasi, Viktoria</creatorcontrib><creatorcontrib>Chiang, Annette</creatorcontrib><creatorcontrib>Rowe, Steven M</creatorcontrib><creatorcontrib>Plyler, Zackery E</creatorcontrib><creatorcontrib>Hong, Jeong S</creatorcontrib><creatorcontrib>Mazur, Marina</creatorcontrib><creatorcontrib>Piazza, Gary A</creatorcontrib><creatorcontrib>Keeton, Adam B</creatorcontrib><creatorcontrib>White, E Lucile</creatorcontrib><creatorcontrib>Rasmussen, Lynn</creatorcontrib><creatorcontrib>Weissman, Allan M</creatorcontrib><creatorcontrib>Denny, R Aldrin</creatorcontrib><creatorcontrib>Brodsky, Jeffrey L</creatorcontrib><creatorcontrib>Sorscher, Eric J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, W Joon</au><au>Goeckeler-Fried, Jennifer L</au><au>Havasi, Viktoria</au><au>Chiang, Annette</au><au>Rowe, Steven M</au><au>Plyler, Zackery E</au><au>Hong, Jeong S</au><au>Mazur, Marina</au><au>Piazza, Gary A</au><au>Keeton, Adam B</au><au>White, E Lucile</au><au>Rasmussen, Lynn</au><au>Weissman, Allan M</au><au>Denny, R Aldrin</au><au>Brodsky, Jeffrey L</au><au>Sorscher, Eric J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-10-12</date><risdate>2016</risdate><volume>11</volume><issue>10</issue><spage>e0163615</spage><epage>e0163615</epage><pages>e0163615-e0163615</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Small molecules that correct the folding defects and enhance surface localization of the F508del mutation in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) comprise an important therapeutic strategy for cystic fibrosis lung disease. However, compounds that rescue the F508del mutant protein to wild type (WT) levels have not been identified. In this report, we consider obstacles to obtaining robust and therapeutically relevant levels of F508del CFTR. For example, markedly diminished steady state amounts of F508del CFTR compared to WT CFTR are present in recombinant bronchial epithelial cell lines, even when much higher levels of mutant transcript are present. In human primary airway cells, the paucity of Band B F508del is even more pronounced, although F508del and WT mRNA concentrations are comparable. Therefore, to augment levels of "repairable" F508del CFTR and identify small molecules that then correct this pool, we developed compound library screening protocols based on automated protein detection. First, cell-based imaging measurements were used to semi-quantitatively estimate distribution of F508del CFTR by high content analysis of two-dimensional images. We evaluated ~2,000 known bioactive compounds from the NIH Roadmap Molecular Libraries Small Molecule Repository in a pilot screen and identified agents that increase the F508del protein pool. Second, we analyzed ~10,000 compounds representing diverse chemical scaffolds for effects on total CFTR expression using a multi-plate fluorescence protocol and describe compounds that promote F508del maturation. Together, our findings demonstrate proof of principle that agents identified in this fashion can augment the level of endoplasmic reticulum (ER) resident "Band B" F508del CFTR suitable for pharmacologic correction. As further evidence in support of this strategy, PYR-41-a compound that inhibits the E1 ubiquitin activating enzyme-was shown to synergistically enhance F508del rescue by C18, a small molecule corrector. Our combined results indicate that increasing the levels of ER-localized CFTR available for repair provides a novel route to correct F508del CFTR.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27732613</pmid><doi>10.1371/journal.pone.0163615</doi><tpages>e0163615</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-10, Vol.11 (10), p.e0163615-e0163615 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1828170706 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Alleles Benzoates - chemistry Benzoates - pharmacology Bioactive compounds Biology and Life Sciences Cell culture Cell lines Cells, Cultured Chemical compounds Content analysis Cystic fibrosis Cystic Fibrosis - genetics Cystic Fibrosis - pathology Cystic Fibrosis Transmembrane Conductance Regulator - chemistry Cystic Fibrosis Transmembrane Conductance Regulator - genetics Cystic Fibrosis Transmembrane Conductance Regulator - metabolism Defects Endoplasmic reticulum Endoplasmic Reticulum - metabolism Epithelial cells Fluorescence Folding Furans - chemistry Furans - pharmacology Gene Deletion Genetic aspects Health aspects HEK293 Cells HeLa Cells High-Throughput Screening Assays Humans Hydroxamic Acids - chemistry Hydroxamic Acids - pharmacology Localization Lung diseases Medical screening Medicine and Health Sciences Microscopy, Fluorescence Mutation Pharmacology Physical Sciences Protein Folding Protein Structure, Tertiary Proteins Pyrazoles - chemistry Pyrazoles - pharmacology Research and Analysis Methods Respiratory tract RNA RNA, Messenger - metabolism Rodents Scaffolds Small Molecule Libraries - chemistry Small Molecule Libraries - pharmacology Transcription Two dimensional analysis Ubiquitin Ubiquitination - drug effects |
title | Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T02%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20the%20Endoplasmic%20Reticulum%20Pool%20of%20the%20F508del%20Allele%20of%20the%20Cystic%20Fibrosis%20Transmembrane%20Conductance%20Regulator%20Leads%20to%20Greater%20Folding%20Correction%20by%20Small%20Molecule%20Therapeutics&rft.jtitle=PloS%20one&rft.au=Chung,%20W%20Joon&rft.date=2016-10-12&rft.volume=11&rft.issue=10&rft.spage=e0163615&rft.epage=e0163615&rft.pages=e0163615-e0163615&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0163615&rft_dat=%3Cgale_plos_%3EA471860582%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1828170706&rft_id=info:pmid/27732613&rft_galeid=A471860582&rft_doaj_id=oai_doaj_org_article_5aa68f888e6b4637be0734ba8a6e6965&rfr_iscdi=true |