Prediction of Incident Diabetes in the Jackson Heart Study Using High-Dimensional Machine Learning
Statistical models to predict incident diabetes are often based on limited variables. Here we pursued two main goals: 1) investigate the relative performance of a machine learning method such as Random Forests (RF) for detecting incident diabetes in a high-dimensional setting defined by a large set...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-10, Vol.11 (10), p.e0163942-e0163942 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0163942 |
---|---|
container_issue | 10 |
container_start_page | e0163942 |
container_title | PloS one |
container_volume | 11 |
creator | Casanova, Ramon Saldana, Santiago Simpson, Sean L Lacy, Mary E Subauste, Angela R Blackshear, Chad Wagenknecht, Lynne Bertoni, Alain G |
description | Statistical models to predict incident diabetes are often based on limited variables. Here we pursued two main goals: 1) investigate the relative performance of a machine learning method such as Random Forests (RF) for detecting incident diabetes in a high-dimensional setting defined by a large set of observational data, and 2) uncover potential predictors of diabetes. The Jackson Heart Study collected data at baseline and in two follow-up visits from 5,301 African Americans. We excluded those with baseline diabetes and no follow-up, leaving 3,633 individuals for analyses. Over a mean 8-year follow-up, 584 participants developed diabetes. The full RF model evaluated 93 variables including demographic, anthropometric, blood biomarker, medical history, and echocardiogram data. We also used RF metrics of variable importance to rank variables according to their contribution to diabetes prediction. We implemented other models based on logistic regression and RF where features were preselected. The RF full model performance was similar (AUC = 0.82) to those more parsimonious models. The top-ranked variables according to RF included hemoglobin A1C, fasting plasma glucose, waist circumference, adiponectin, c-reactive protein, triglycerides, leptin, left ventricular mass, high-density lipoprotein cholesterol, and aldosterone. This work shows the potential of RF for incident diabetes prediction while dealing with high-dimensional data. |
doi_str_mv | 10.1371/journal.pone.0163942 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1827865102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A471859674</galeid><doaj_id>oai_doaj_org_article_c20d6d2446f84ab9957b0d694eb08802</doaj_id><sourcerecordid>A471859674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c791t-d7f73fb112680b34a04f7739bb348099acb9636a8ab99730b4877d181c59aeca3</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBYQkJw0eKvxPbNpGkDWlQ0xBi3luM4iUtqlziZtn-Ps2ZTg3Yx-cLW8XPe82GfJHmN4BwRhj6tfd861cy33pk5RBkRFD9JDpEgeJZhSJ7unQ-SFyGsIUwJz7LnyQFmDDPMxWGS_2hNYXVnvQO-BEunbWFcB86syk1nArAOdLUB35T-EyKzMKrtwEXXFzfgMlhXgYWt6tmZ3RgXoohqwHela-sMWEXUReJl8qxUTTCvxv0oufzy-dfpYrY6_7o8PVnNNBOomxWsZKTMEcIZhzmhCtKSMSLyeOZQCKVzkZFMcZULwQjMKWesQBzpVCijFTlK3u50t40PcmxPkIhjxrMUQRyJ5Y4ovFrLbWs3qr2RXll5a_BtJWN1VjdGagyLrMCUZiWnQ8SU5dEiqMkh57dax2O0Pt-YQsemtaqZiE5vnK1l5a9kClNOeRoFPowCrf_bm9DJjQ3aNI1yxvdD3oQRLEiKHoOmhAnBSUTf_Yc-3IiRqlSs1brSxxT1ICpPKEM8FRmjkZo_QMVVmI3V8duVNtonDh8nDpHpzHVXqT4Eubz4-Xj2_PeUfb_H1kY1XR180w-_NkxBugN160NoTXn_HgjKYWruuiGHqZHj1ES3N_tvee90NybkH4_cEC4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1827865102</pqid></control><display><type>article</type><title>Prediction of Incident Diabetes in the Jackson Heart Study Using High-Dimensional Machine Learning</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Casanova, Ramon ; Saldana, Santiago ; Simpson, Sean L ; Lacy, Mary E ; Subauste, Angela R ; Blackshear, Chad ; Wagenknecht, Lynne ; Bertoni, Alain G</creator><contributor>Schnabel, Renate B</contributor><creatorcontrib>Casanova, Ramon ; Saldana, Santiago ; Simpson, Sean L ; Lacy, Mary E ; Subauste, Angela R ; Blackshear, Chad ; Wagenknecht, Lynne ; Bertoni, Alain G ; Schnabel, Renate B</creatorcontrib><description>Statistical models to predict incident diabetes are often based on limited variables. Here we pursued two main goals: 1) investigate the relative performance of a machine learning method such as Random Forests (RF) for detecting incident diabetes in a high-dimensional setting defined by a large set of observational data, and 2) uncover potential predictors of diabetes. The Jackson Heart Study collected data at baseline and in two follow-up visits from 5,301 African Americans. We excluded those with baseline diabetes and no follow-up, leaving 3,633 individuals for analyses. Over a mean 8-year follow-up, 584 participants developed diabetes. The full RF model evaluated 93 variables including demographic, anthropometric, blood biomarker, medical history, and echocardiogram data. We also used RF metrics of variable importance to rank variables according to their contribution to diabetes prediction. We implemented other models based on logistic regression and RF where features were preselected. The RF full model performance was similar (AUC = 0.82) to those more parsimonious models. The top-ranked variables according to RF included hemoglobin A1C, fasting plasma glucose, waist circumference, adiponectin, c-reactive protein, triglycerides, leptin, left ventricular mass, high-density lipoprotein cholesterol, and aldosterone. This work shows the potential of RF for incident diabetes prediction while dealing with high-dimensional data.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0163942</identifier><identifier>PMID: 27727289</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adiponectin ; Adiponectin - blood ; Adult ; African Americans ; Aged ; Aldosterone ; Anthropometry ; Biology and Life Sciences ; Biomarkers ; Biomarkers - blood ; Blood Glucose - analysis ; C-reactive protein ; C-Reactive Protein - analysis ; Cholesterol ; Cholesterol, HDL - blood ; Chronic illnesses ; Computer and Information Sciences ; Demographic variables ; Demographics ; Demography ; Development and progression ; Diabetes mellitus ; Diabetes Mellitus, Type 2 - epidemiology ; Echocardiography ; Female ; Follow-Up Studies ; Glucose ; Glycated Hemoglobin A - analysis ; Glycosylated hemoglobin ; Health risk assessment ; Heart ; Hemoglobin ; Humans ; Incidence ; Insulin resistance ; Learning algorithms ; Leptin ; Leptin - blood ; Machine Learning ; Male ; Mathematical models ; Medicine and Health Sciences ; Middle Aged ; Minority & ethnic groups ; Models, Theoretical ; People and places ; Physical Sciences ; Regression analysis ; Research and Analysis Methods ; Statistical analysis ; Statistical models ; Studies ; Systematic review ; Teaching methods ; Triglycerides ; Triglycerides - blood ; Type 2 diabetes ; Ventricle ; Waist Circumference</subject><ispartof>PloS one, 2016-10, Vol.11 (10), p.e0163942-e0163942</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Casanova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Casanova et al 2016 Casanova et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c791t-d7f73fb112680b34a04f7739bb348099acb9636a8ab99730b4877d181c59aeca3</citedby><cites>FETCH-LOGICAL-c791t-d7f73fb112680b34a04f7739bb348099acb9636a8ab99730b4877d181c59aeca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5058485/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5058485/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27727289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schnabel, Renate B</contributor><creatorcontrib>Casanova, Ramon</creatorcontrib><creatorcontrib>Saldana, Santiago</creatorcontrib><creatorcontrib>Simpson, Sean L</creatorcontrib><creatorcontrib>Lacy, Mary E</creatorcontrib><creatorcontrib>Subauste, Angela R</creatorcontrib><creatorcontrib>Blackshear, Chad</creatorcontrib><creatorcontrib>Wagenknecht, Lynne</creatorcontrib><creatorcontrib>Bertoni, Alain G</creatorcontrib><title>Prediction of Incident Diabetes in the Jackson Heart Study Using High-Dimensional Machine Learning</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Statistical models to predict incident diabetes are often based on limited variables. Here we pursued two main goals: 1) investigate the relative performance of a machine learning method such as Random Forests (RF) for detecting incident diabetes in a high-dimensional setting defined by a large set of observational data, and 2) uncover potential predictors of diabetes. The Jackson Heart Study collected data at baseline and in two follow-up visits from 5,301 African Americans. We excluded those with baseline diabetes and no follow-up, leaving 3,633 individuals for analyses. Over a mean 8-year follow-up, 584 participants developed diabetes. The full RF model evaluated 93 variables including demographic, anthropometric, blood biomarker, medical history, and echocardiogram data. We also used RF metrics of variable importance to rank variables according to their contribution to diabetes prediction. We implemented other models based on logistic regression and RF where features were preselected. The RF full model performance was similar (AUC = 0.82) to those more parsimonious models. The top-ranked variables according to RF included hemoglobin A1C, fasting plasma glucose, waist circumference, adiponectin, c-reactive protein, triglycerides, leptin, left ventricular mass, high-density lipoprotein cholesterol, and aldosterone. This work shows the potential of RF for incident diabetes prediction while dealing with high-dimensional data.</description><subject>Adiponectin</subject><subject>Adiponectin - blood</subject><subject>Adult</subject><subject>African Americans</subject><subject>Aged</subject><subject>Aldosterone</subject><subject>Anthropometry</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Biomarkers - blood</subject><subject>Blood Glucose - analysis</subject><subject>C-reactive protein</subject><subject>C-Reactive Protein - analysis</subject><subject>Cholesterol</subject><subject>Cholesterol, HDL - blood</subject><subject>Chronic illnesses</subject><subject>Computer and Information Sciences</subject><subject>Demographic variables</subject><subject>Demographics</subject><subject>Demography</subject><subject>Development and progression</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Type 2 - epidemiology</subject><subject>Echocardiography</subject><subject>Female</subject><subject>Follow-Up Studies</subject><subject>Glucose</subject><subject>Glycated Hemoglobin A - analysis</subject><subject>Glycosylated hemoglobin</subject><subject>Health risk assessment</subject><subject>Heart</subject><subject>Hemoglobin</subject><subject>Humans</subject><subject>Incidence</subject><subject>Insulin resistance</subject><subject>Learning algorithms</subject><subject>Leptin</subject><subject>Leptin - blood</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Minority & ethnic groups</subject><subject>Models, Theoretical</subject><subject>People and places</subject><subject>Physical Sciences</subject><subject>Regression analysis</subject><subject>Research and Analysis Methods</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Studies</subject><subject>Systematic review</subject><subject>Teaching methods</subject><subject>Triglycerides</subject><subject>Triglycerides - blood</subject><subject>Type 2 diabetes</subject><subject>Ventricle</subject><subject>Waist Circumference</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBYQkJw0eKvxPbNpGkDWlQ0xBi3luM4iUtqlziZtn-Ps2ZTg3Yx-cLW8XPe82GfJHmN4BwRhj6tfd861cy33pk5RBkRFD9JDpEgeJZhSJ7unQ-SFyGsIUwJz7LnyQFmDDPMxWGS_2hNYXVnvQO-BEunbWFcB86syk1nArAOdLUB35T-EyKzMKrtwEXXFzfgMlhXgYWt6tmZ3RgXoohqwHela-sMWEXUReJl8qxUTTCvxv0oufzy-dfpYrY6_7o8PVnNNBOomxWsZKTMEcIZhzmhCtKSMSLyeOZQCKVzkZFMcZULwQjMKWesQBzpVCijFTlK3u50t40PcmxPkIhjxrMUQRyJ5Y4ovFrLbWs3qr2RXll5a_BtJWN1VjdGagyLrMCUZiWnQ8SU5dEiqMkh57dax2O0Pt-YQsemtaqZiE5vnK1l5a9kClNOeRoFPowCrf_bm9DJjQ3aNI1yxvdD3oQRLEiKHoOmhAnBSUTf_Yc-3IiRqlSs1brSxxT1ICpPKEM8FRmjkZo_QMVVmI3V8duVNtonDh8nDpHpzHVXqT4Eubz4-Xj2_PeUfb_H1kY1XR180w-_NkxBugN160NoTXn_HgjKYWruuiGHqZHj1ES3N_tvee90NybkH4_cEC4</recordid><startdate>20161011</startdate><enddate>20161011</enddate><creator>Casanova, Ramon</creator><creator>Saldana, Santiago</creator><creator>Simpson, Sean L</creator><creator>Lacy, Mary E</creator><creator>Subauste, Angela R</creator><creator>Blackshear, Chad</creator><creator>Wagenknecht, Lynne</creator><creator>Bertoni, Alain G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20161011</creationdate><title>Prediction of Incident Diabetes in the Jackson Heart Study Using High-Dimensional Machine Learning</title><author>Casanova, Ramon ; Saldana, Santiago ; Simpson, Sean L ; Lacy, Mary E ; Subauste, Angela R ; Blackshear, Chad ; Wagenknecht, Lynne ; Bertoni, Alain G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c791t-d7f73fb112680b34a04f7739bb348099acb9636a8ab99730b4877d181c59aeca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adiponectin</topic><topic>Adiponectin - blood</topic><topic>Adult</topic><topic>African Americans</topic><topic>Aged</topic><topic>Aldosterone</topic><topic>Anthropometry</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Biomarkers - blood</topic><topic>Blood Glucose - analysis</topic><topic>C-reactive protein</topic><topic>C-Reactive Protein - analysis</topic><topic>Cholesterol</topic><topic>Cholesterol, HDL - blood</topic><topic>Chronic illnesses</topic><topic>Computer and Information Sciences</topic><topic>Demographic variables</topic><topic>Demographics</topic><topic>Demography</topic><topic>Development and progression</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Type 2 - epidemiology</topic><topic>Echocardiography</topic><topic>Female</topic><topic>Follow-Up Studies</topic><topic>Glucose</topic><topic>Glycated Hemoglobin A - analysis</topic><topic>Glycosylated hemoglobin</topic><topic>Health risk assessment</topic><topic>Heart</topic><topic>Hemoglobin</topic><topic>Humans</topic><topic>Incidence</topic><topic>Insulin resistance</topic><topic>Learning algorithms</topic><topic>Leptin</topic><topic>Leptin - blood</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Minority & ethnic groups</topic><topic>Models, Theoretical</topic><topic>People and places</topic><topic>Physical Sciences</topic><topic>Regression analysis</topic><topic>Research and Analysis Methods</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Studies</topic><topic>Systematic review</topic><topic>Teaching methods</topic><topic>Triglycerides</topic><topic>Triglycerides - blood</topic><topic>Type 2 diabetes</topic><topic>Ventricle</topic><topic>Waist Circumference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casanova, Ramon</creatorcontrib><creatorcontrib>Saldana, Santiago</creatorcontrib><creatorcontrib>Simpson, Sean L</creatorcontrib><creatorcontrib>Lacy, Mary E</creatorcontrib><creatorcontrib>Subauste, Angela R</creatorcontrib><creatorcontrib>Blackshear, Chad</creatorcontrib><creatorcontrib>Wagenknecht, Lynne</creatorcontrib><creatorcontrib>Bertoni, Alain G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casanova, Ramon</au><au>Saldana, Santiago</au><au>Simpson, Sean L</au><au>Lacy, Mary E</au><au>Subauste, Angela R</au><au>Blackshear, Chad</au><au>Wagenknecht, Lynne</au><au>Bertoni, Alain G</au><au>Schnabel, Renate B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Incident Diabetes in the Jackson Heart Study Using High-Dimensional Machine Learning</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-10-11</date><risdate>2016</risdate><volume>11</volume><issue>10</issue><spage>e0163942</spage><epage>e0163942</epage><pages>e0163942-e0163942</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Statistical models to predict incident diabetes are often based on limited variables. Here we pursued two main goals: 1) investigate the relative performance of a machine learning method such as Random Forests (RF) for detecting incident diabetes in a high-dimensional setting defined by a large set of observational data, and 2) uncover potential predictors of diabetes. The Jackson Heart Study collected data at baseline and in two follow-up visits from 5,301 African Americans. We excluded those with baseline diabetes and no follow-up, leaving 3,633 individuals for analyses. Over a mean 8-year follow-up, 584 participants developed diabetes. The full RF model evaluated 93 variables including demographic, anthropometric, blood biomarker, medical history, and echocardiogram data. We also used RF metrics of variable importance to rank variables according to their contribution to diabetes prediction. We implemented other models based on logistic regression and RF where features were preselected. The RF full model performance was similar (AUC = 0.82) to those more parsimonious models. The top-ranked variables according to RF included hemoglobin A1C, fasting plasma glucose, waist circumference, adiponectin, c-reactive protein, triglycerides, leptin, left ventricular mass, high-density lipoprotein cholesterol, and aldosterone. This work shows the potential of RF for incident diabetes prediction while dealing with high-dimensional data.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27727289</pmid><doi>10.1371/journal.pone.0163942</doi><tpages>e0163942</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-10, Vol.11 (10), p.e0163942-e0163942 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1827865102 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adiponectin Adiponectin - blood Adult African Americans Aged Aldosterone Anthropometry Biology and Life Sciences Biomarkers Biomarkers - blood Blood Glucose - analysis C-reactive protein C-Reactive Protein - analysis Cholesterol Cholesterol, HDL - blood Chronic illnesses Computer and Information Sciences Demographic variables Demographics Demography Development and progression Diabetes mellitus Diabetes Mellitus, Type 2 - epidemiology Echocardiography Female Follow-Up Studies Glucose Glycated Hemoglobin A - analysis Glycosylated hemoglobin Health risk assessment Heart Hemoglobin Humans Incidence Insulin resistance Learning algorithms Leptin Leptin - blood Machine Learning Male Mathematical models Medicine and Health Sciences Middle Aged Minority & ethnic groups Models, Theoretical People and places Physical Sciences Regression analysis Research and Analysis Methods Statistical analysis Statistical models Studies Systematic review Teaching methods Triglycerides Triglycerides - blood Type 2 diabetes Ventricle Waist Circumference |
title | Prediction of Incident Diabetes in the Jackson Heart Study Using High-Dimensional Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A26%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Incident%20Diabetes%20in%20the%20Jackson%20Heart%20Study%20Using%20High-Dimensional%20Machine%20Learning&rft.jtitle=PloS%20one&rft.au=Casanova,%20Ramon&rft.date=2016-10-11&rft.volume=11&rft.issue=10&rft.spage=e0163942&rft.epage=e0163942&rft.pages=e0163942-e0163942&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0163942&rft_dat=%3Cgale_plos_%3EA471859674%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1827865102&rft_id=info:pmid/27727289&rft_galeid=A471859674&rft_doaj_id=oai_doaj_org_article_c20d6d2446f84ab9957b0d694eb08802&rfr_iscdi=true |