Critical Involvement of Environmental Carbon Dioxide Fixation to Drive Wax Ester Fermentation in Euglena

Accumulation profiles of wax esters in Euglena gracilis Z were studied under several environmental conditions. The highest amount of total wax esters accumulated under hypoxia in the dark, and C28 (myristyl-myristate, C14:0-C14:0) was prevalent among all conditions investigated. The wax ester produc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-09, Vol.11 (9), p.e0162827-e0162827
Hauptverfasser: Padermshoke, Adchara, Ogawa, Takumi, Nishio, Kazuki, Nakazawa, Masami, Nakamoto, Masatoshi, Okazawa, Atsushi, Kanaya, Shigehiko, Arita, Masanori, Ohta, Daisaku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0162827
container_issue 9
container_start_page e0162827
container_title PloS one
container_volume 11
creator Padermshoke, Adchara
Ogawa, Takumi
Nishio, Kazuki
Nakazawa, Masami
Nakamoto, Masatoshi
Okazawa, Atsushi
Kanaya, Shigehiko
Arita, Masanori
Ohta, Daisaku
description Accumulation profiles of wax esters in Euglena gracilis Z were studied under several environmental conditions. The highest amount of total wax esters accumulated under hypoxia in the dark, and C28 (myristyl-myristate, C14:0-C14:0) was prevalent among all conditions investigated. The wax ester production was almost completely suppressed under anoxia in the light, and supplying exogenous inorganic carbon sources restored wax ester fermentation, indicating the need for external carbon sources for the wax ester fermentation. 13C-labeling experiments revealed specific isotopic enrichment in the odd-numbered fatty acids derived from wax esters, indicating that the exogenously-supplied CO2 was incorporated into wax esters via the propionyl-CoA pathway through the reverse tricarboxylic acid (TCA) cycle. The addition of 3-mercaptopicolinic acid, a phosphoenolpyruvate carboxykinase (PEPCK) inhibitor, significantly affected the incorporation of 13C into citrate and malate as the biosynthetic intermediates of the odd-numbered fatty acids, suggesting the involvement of PEPCK reaction to drive wax ester fermentation. Additionally, the 13C-enrichment pattern of succinate suggested that the CO2 assimilation might proceed through alternative pathways in addition to the PEPCK reaction. The current results indicate that the mechanisms of anoxic CO2 assimilation are an important target to reinforce wax ester fermentation in Euglena.
doi_str_mv 10.1371/journal.pone.0162827
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1823427445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A471907109</galeid><doaj_id>oai_doaj_org_article_a77b83f0b38640018e2b3a55bd48743c</doaj_id><sourcerecordid>A471907109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c791t-679dd4fa56810f1dd27f752ee6586891870843dbd9c95369a4136ae0d68af0723</originalsourceid><addsrcrecordid>eNqNk11r2zAUhs3YWLtu_2BshsHYLpLpW_LNoKTJFigU9nkpZFtOVBQpk-yQ_fvJiVvi0YviC1vnPOe1ziudLHsNwRRiDj_d-i44Zadb7_QUQIYE4k-yc1hgNGEI4Kcn32fZixhvAaBYMPY8O0OcsYIydp6tZ8G0plI2X7qdtzu90a7NfZPP3c4E7_plSs5UKL3Lr4zfm1rnC7NXrUmB1udXwex0_lvt83lsdcgXOhyKDnnj8nm3stqpl9mzRtmoXw3vi-znYv5j9nVyffNlObu8nlS8gO2E8aKuSaMoExA0sK4RbzhFWjMqmCig4EAQXJd1URUUs0IRiJnSoGZCNYAjfJG9PepurY9yMClKKBAmiBNCE7E8ErVXt3IbzEaFv9IrIw8BH1ZSheSJ1VJxXgrcgDL5RgCAQqMSK0rLmghOcJW0Pg9_68qNrqvUeFB2JDrOOLOWK7-TFGAmKEwCHwaB4P90OrZyY2KlrVVO-67fN6YUQ0bQI1DEhRCE9S2--w992IiBWqnUq3GNT1uselF5STgsAIegSNT0ASo9td6YKl2-xqT4qODjqCAxrd63K9XFKJffvz2evfk1Zt-fsGutbLuO3nb9RYtjkBzBKvgYg27uzwMC2c_OnRuynx05zE4qe3N6lvdFd8OC_wEKjBJ3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1823427445</pqid></control><display><type>article</type><title>Critical Involvement of Environmental Carbon Dioxide Fixation to Drive Wax Ester Fermentation in Euglena</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Padermshoke, Adchara ; Ogawa, Takumi ; Nishio, Kazuki ; Nakazawa, Masami ; Nakamoto, Masatoshi ; Okazawa, Atsushi ; Kanaya, Shigehiko ; Arita, Masanori ; Ohta, Daisaku</creator><contributor>Yang, Shihui</contributor><creatorcontrib>Padermshoke, Adchara ; Ogawa, Takumi ; Nishio, Kazuki ; Nakazawa, Masami ; Nakamoto, Masatoshi ; Okazawa, Atsushi ; Kanaya, Shigehiko ; Arita, Masanori ; Ohta, Daisaku ; Yang, Shihui</creatorcontrib><description>Accumulation profiles of wax esters in Euglena gracilis Z were studied under several environmental conditions. The highest amount of total wax esters accumulated under hypoxia in the dark, and C28 (myristyl-myristate, C14:0-C14:0) was prevalent among all conditions investigated. The wax ester production was almost completely suppressed under anoxia in the light, and supplying exogenous inorganic carbon sources restored wax ester fermentation, indicating the need for external carbon sources for the wax ester fermentation. 13C-labeling experiments revealed specific isotopic enrichment in the odd-numbered fatty acids derived from wax esters, indicating that the exogenously-supplied CO2 was incorporated into wax esters via the propionyl-CoA pathway through the reverse tricarboxylic acid (TCA) cycle. The addition of 3-mercaptopicolinic acid, a phosphoenolpyruvate carboxykinase (PEPCK) inhibitor, significantly affected the incorporation of 13C into citrate and malate as the biosynthetic intermediates of the odd-numbered fatty acids, suggesting the involvement of PEPCK reaction to drive wax ester fermentation. Additionally, the 13C-enrichment pattern of succinate suggested that the CO2 assimilation might proceed through alternative pathways in addition to the PEPCK reaction. The current results indicate that the mechanisms of anoxic CO2 assimilation are an important target to reinforce wax ester fermentation in Euglena.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0162827</identifier><identifier>PMID: 27669566</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alcohol ; Anoxia ; Assimilation ; Biology and Life Sciences ; Cancer ; Carbon 13 ; Carbon dioxide ; Carbon dioxide fixation ; Carbon sources ; Chromatography ; Citric acid ; Enrichment ; Environmental conditions ; Environmental science ; Esters ; Euglena ; Euglena gracilis ; Fatty acids ; Fermentation ; Hypoxia ; Information science ; Inorganic carbon ; Intermediates ; Isotopic enrichment ; Malate ; Mass spectrometry ; Medicine and Health Sciences ; Metabolism ; Metabolites ; Microorganisms ; Physical Sciences ; Research and Analysis Methods ; Scientific imaging ; Tricarboxylic acid cycle</subject><ispartof>PloS one, 2016-09, Vol.11 (9), p.e0162827-e0162827</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Padermshoke et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Padermshoke et al 2016 Padermshoke et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c791t-679dd4fa56810f1dd27f752ee6586891870843dbd9c95369a4136ae0d68af0723</citedby><cites>FETCH-LOGICAL-c791t-679dd4fa56810f1dd27f752ee6586891870843dbd9c95369a4136ae0d68af0723</cites><orcidid>0000-0002-9924-3867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036851/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036851/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27669566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Yang, Shihui</contributor><creatorcontrib>Padermshoke, Adchara</creatorcontrib><creatorcontrib>Ogawa, Takumi</creatorcontrib><creatorcontrib>Nishio, Kazuki</creatorcontrib><creatorcontrib>Nakazawa, Masami</creatorcontrib><creatorcontrib>Nakamoto, Masatoshi</creatorcontrib><creatorcontrib>Okazawa, Atsushi</creatorcontrib><creatorcontrib>Kanaya, Shigehiko</creatorcontrib><creatorcontrib>Arita, Masanori</creatorcontrib><creatorcontrib>Ohta, Daisaku</creatorcontrib><title>Critical Involvement of Environmental Carbon Dioxide Fixation to Drive Wax Ester Fermentation in Euglena</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Accumulation profiles of wax esters in Euglena gracilis Z were studied under several environmental conditions. The highest amount of total wax esters accumulated under hypoxia in the dark, and C28 (myristyl-myristate, C14:0-C14:0) was prevalent among all conditions investigated. The wax ester production was almost completely suppressed under anoxia in the light, and supplying exogenous inorganic carbon sources restored wax ester fermentation, indicating the need for external carbon sources for the wax ester fermentation. 13C-labeling experiments revealed specific isotopic enrichment in the odd-numbered fatty acids derived from wax esters, indicating that the exogenously-supplied CO2 was incorporated into wax esters via the propionyl-CoA pathway through the reverse tricarboxylic acid (TCA) cycle. The addition of 3-mercaptopicolinic acid, a phosphoenolpyruvate carboxykinase (PEPCK) inhibitor, significantly affected the incorporation of 13C into citrate and malate as the biosynthetic intermediates of the odd-numbered fatty acids, suggesting the involvement of PEPCK reaction to drive wax ester fermentation. Additionally, the 13C-enrichment pattern of succinate suggested that the CO2 assimilation might proceed through alternative pathways in addition to the PEPCK reaction. The current results indicate that the mechanisms of anoxic CO2 assimilation are an important target to reinforce wax ester fermentation in Euglena.</description><subject>Alcohol</subject><subject>Anoxia</subject><subject>Assimilation</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Carbon 13</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide fixation</subject><subject>Carbon sources</subject><subject>Chromatography</subject><subject>Citric acid</subject><subject>Enrichment</subject><subject>Environmental conditions</subject><subject>Environmental science</subject><subject>Esters</subject><subject>Euglena</subject><subject>Euglena gracilis</subject><subject>Fatty acids</subject><subject>Fermentation</subject><subject>Hypoxia</subject><subject>Information science</subject><subject>Inorganic carbon</subject><subject>Intermediates</subject><subject>Isotopic enrichment</subject><subject>Malate</subject><subject>Mass spectrometry</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microorganisms</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Scientific imaging</subject><subject>Tricarboxylic acid cycle</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11r2zAUhs3YWLtu_2BshsHYLpLpW_LNoKTJFigU9nkpZFtOVBQpk-yQ_fvJiVvi0YviC1vnPOe1ziudLHsNwRRiDj_d-i44Zadb7_QUQIYE4k-yc1hgNGEI4Kcn32fZixhvAaBYMPY8O0OcsYIydp6tZ8G0plI2X7qdtzu90a7NfZPP3c4E7_plSs5UKL3Lr4zfm1rnC7NXrUmB1udXwex0_lvt83lsdcgXOhyKDnnj8nm3stqpl9mzRtmoXw3vi-znYv5j9nVyffNlObu8nlS8gO2E8aKuSaMoExA0sK4RbzhFWjMqmCig4EAQXJd1URUUs0IRiJnSoGZCNYAjfJG9PepurY9yMClKKBAmiBNCE7E8ErVXt3IbzEaFv9IrIw8BH1ZSheSJ1VJxXgrcgDL5RgCAQqMSK0rLmghOcJW0Pg9_68qNrqvUeFB2JDrOOLOWK7-TFGAmKEwCHwaB4P90OrZyY2KlrVVO-67fN6YUQ0bQI1DEhRCE9S2--w992IiBWqnUq3GNT1uselF5STgsAIegSNT0ASo9td6YKl2-xqT4qODjqCAxrd63K9XFKJffvz2evfk1Zt-fsGutbLuO3nb9RYtjkBzBKvgYg27uzwMC2c_OnRuynx05zE4qe3N6lvdFd8OC_wEKjBJ3</recordid><startdate>20160926</startdate><enddate>20160926</enddate><creator>Padermshoke, Adchara</creator><creator>Ogawa, Takumi</creator><creator>Nishio, Kazuki</creator><creator>Nakazawa, Masami</creator><creator>Nakamoto, Masatoshi</creator><creator>Okazawa, Atsushi</creator><creator>Kanaya, Shigehiko</creator><creator>Arita, Masanori</creator><creator>Ohta, Daisaku</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9924-3867</orcidid></search><sort><creationdate>20160926</creationdate><title>Critical Involvement of Environmental Carbon Dioxide Fixation to Drive Wax Ester Fermentation in Euglena</title><author>Padermshoke, Adchara ; Ogawa, Takumi ; Nishio, Kazuki ; Nakazawa, Masami ; Nakamoto, Masatoshi ; Okazawa, Atsushi ; Kanaya, Shigehiko ; Arita, Masanori ; Ohta, Daisaku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c791t-679dd4fa56810f1dd27f752ee6586891870843dbd9c95369a4136ae0d68af0723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alcohol</topic><topic>Anoxia</topic><topic>Assimilation</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Carbon 13</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide fixation</topic><topic>Carbon sources</topic><topic>Chromatography</topic><topic>Citric acid</topic><topic>Enrichment</topic><topic>Environmental conditions</topic><topic>Environmental science</topic><topic>Esters</topic><topic>Euglena</topic><topic>Euglena gracilis</topic><topic>Fatty acids</topic><topic>Fermentation</topic><topic>Hypoxia</topic><topic>Information science</topic><topic>Inorganic carbon</topic><topic>Intermediates</topic><topic>Isotopic enrichment</topic><topic>Malate</topic><topic>Mass spectrometry</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microorganisms</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Scientific imaging</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Padermshoke, Adchara</creatorcontrib><creatorcontrib>Ogawa, Takumi</creatorcontrib><creatorcontrib>Nishio, Kazuki</creatorcontrib><creatorcontrib>Nakazawa, Masami</creatorcontrib><creatorcontrib>Nakamoto, Masatoshi</creatorcontrib><creatorcontrib>Okazawa, Atsushi</creatorcontrib><creatorcontrib>Kanaya, Shigehiko</creatorcontrib><creatorcontrib>Arita, Masanori</creatorcontrib><creatorcontrib>Ohta, Daisaku</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Padermshoke, Adchara</au><au>Ogawa, Takumi</au><au>Nishio, Kazuki</au><au>Nakazawa, Masami</au><au>Nakamoto, Masatoshi</au><au>Okazawa, Atsushi</au><au>Kanaya, Shigehiko</au><au>Arita, Masanori</au><au>Ohta, Daisaku</au><au>Yang, Shihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical Involvement of Environmental Carbon Dioxide Fixation to Drive Wax Ester Fermentation in Euglena</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-09-26</date><risdate>2016</risdate><volume>11</volume><issue>9</issue><spage>e0162827</spage><epage>e0162827</epage><pages>e0162827-e0162827</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Accumulation profiles of wax esters in Euglena gracilis Z were studied under several environmental conditions. The highest amount of total wax esters accumulated under hypoxia in the dark, and C28 (myristyl-myristate, C14:0-C14:0) was prevalent among all conditions investigated. The wax ester production was almost completely suppressed under anoxia in the light, and supplying exogenous inorganic carbon sources restored wax ester fermentation, indicating the need for external carbon sources for the wax ester fermentation. 13C-labeling experiments revealed specific isotopic enrichment in the odd-numbered fatty acids derived from wax esters, indicating that the exogenously-supplied CO2 was incorporated into wax esters via the propionyl-CoA pathway through the reverse tricarboxylic acid (TCA) cycle. The addition of 3-mercaptopicolinic acid, a phosphoenolpyruvate carboxykinase (PEPCK) inhibitor, significantly affected the incorporation of 13C into citrate and malate as the biosynthetic intermediates of the odd-numbered fatty acids, suggesting the involvement of PEPCK reaction to drive wax ester fermentation. Additionally, the 13C-enrichment pattern of succinate suggested that the CO2 assimilation might proceed through alternative pathways in addition to the PEPCK reaction. The current results indicate that the mechanisms of anoxic CO2 assimilation are an important target to reinforce wax ester fermentation in Euglena.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27669566</pmid><doi>10.1371/journal.pone.0162827</doi><tpages>e0162827</tpages><orcidid>https://orcid.org/0000-0002-9924-3867</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-09, Vol.11 (9), p.e0162827-e0162827
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1823427445
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alcohol
Anoxia
Assimilation
Biology and Life Sciences
Cancer
Carbon 13
Carbon dioxide
Carbon dioxide fixation
Carbon sources
Chromatography
Citric acid
Enrichment
Environmental conditions
Environmental science
Esters
Euglena
Euglena gracilis
Fatty acids
Fermentation
Hypoxia
Information science
Inorganic carbon
Intermediates
Isotopic enrichment
Malate
Mass spectrometry
Medicine and Health Sciences
Metabolism
Metabolites
Microorganisms
Physical Sciences
Research and Analysis Methods
Scientific imaging
Tricarboxylic acid cycle
title Critical Involvement of Environmental Carbon Dioxide Fixation to Drive Wax Ester Fermentation in Euglena
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20Involvement%20of%20Environmental%20Carbon%20Dioxide%20Fixation%20to%20Drive%20Wax%20Ester%20Fermentation%20in%20Euglena&rft.jtitle=PloS%20one&rft.au=Padermshoke,%20Adchara&rft.date=2016-09-26&rft.volume=11&rft.issue=9&rft.spage=e0162827&rft.epage=e0162827&rft.pages=e0162827-e0162827&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0162827&rft_dat=%3Cgale_plos_%3EA471907109%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1823427445&rft_id=info:pmid/27669566&rft_galeid=A471907109&rft_doaj_id=oai_doaj_org_article_a77b83f0b38640018e2b3a55bd48743c&rfr_iscdi=true