Building a 3D Virtual Liver: Methods for Simulating Blood Flow and Hepatic Clearance on 3D Structures
In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-09, Vol.11 (9), p.e0162215-e0162215 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0162215 |
---|---|
container_issue | 9 |
container_start_page | e0162215 |
container_title | PloS one |
container_volume | 11 |
creator | White, Diana Coombe, Dennis Rezania, Vahid Tuszynski, Jack |
description | In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver. |
doi_str_mv | 10.1371/journal.pone.0162215 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1821788627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A471894101</galeid><doaj_id>oai_doaj_org_article_8d96070ca8f64016ab8ebaaea86f471a</doaj_id><sourcerecordid>A471894101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-58dad2a2a7f95915bdfb7cded0ede718ee193173838d4275bc8b4a528086decc3</originalsourceid><addsrcrecordid>eNqNk01vEzEQhlcIREvhHyBYCQnBIcH2ftjLAakNlEYKqkSgV2vWnk0cOetg7xb49zjNtkpQD5UPtsbPvJ4PT5K8pGRMM04_rFzvW7DjjWtxTGjJGC0eJce0ytioZCR7vHc-Sp6FsCKkyERZPk2OGC_zqsj4cYJnvbHatIsU0uxzemV814NNZ-Ya_cf0G3ZLp0PaOJ_Ozbq30G3RM-ucTs-t-51Cq9ML3ES7SicWwUOrMHXtVmze-V51vcfwPHnSgA34YthPkp_nX35MLkazy6_TyelspDgrulEhNGgGDHhTFRUtat3UXGnUBDVyKhBjRpRnIhM6Z7yolahzKJggotSoVHaSvN7pbqwLcqhQkFQwyoUoGY_EdEdoByu58WYN_q90YOSNwfmFBB-TsSiFrkrCiQLRlHksMNQCawAEUTY5pxC1Pg2v9fUatcK282APRA9vWrOUC3ctC8KqimVR4N0g4N2vHkMn1yYotBZadP1N3LyiFWfVQ1CWlyXNWETf_IfeX4iBWkDM1bSNiyGqrag8jdmJKqeERmp8DxWXxrVR8ec1JtoPHN4fOESmwz_dAvoQ5HT-_eHs5dUh-3aPXSLYbhmc7Tvj2nAI5jtQeReCx-auH5TI7eDcVkNuB0cOgxPdXu338s7pdlKyf1GoEc4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1821788627</pqid></control><display><type>article</type><title>Building a 3D Virtual Liver: Methods for Simulating Blood Flow and Hepatic Clearance on 3D Structures</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>White, Diana ; Coombe, Dennis ; Rezania, Vahid ; Tuszynski, Jack</creator><contributor>Mandell, Mercedes Susan</contributor><creatorcontrib>White, Diana ; Coombe, Dennis ; Rezania, Vahid ; Tuszynski, Jack ; Mandell, Mercedes Susan</creatorcontrib><description>In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0162215</identifier><identifier>PMID: 27649537</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Animals ; Approximation ; Biology ; Biology and Life Sciences ; Biomedical engineering ; Blood ; Blood flow ; Chemical compounds ; Computational fluid dynamics ; Computer applications ; Computer Simulation ; Differential equations ; Dogs ; Drug metabolism ; Drugs ; Fluid flow ; Hemodynamics ; Hepatic vein ; Humans ; Liver ; Liver - anatomy & histology ; Liver - blood supply ; Liver - metabolism ; Liver Circulation ; Mathematical analysis ; Mathematical models ; Medicine and Health Sciences ; Metabolism ; Methods ; Models, Anatomic ; Models, Biological ; Optimization ; Partial differential equations ; Pharmaceutical Preparations - metabolism ; Physical Sciences ; Physiological aspects ; Physiology ; Veins & arteries ; White, Dennis</subject><ispartof>PloS one, 2016-09, Vol.11 (9), p.e0162215-e0162215</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-58dad2a2a7f95915bdfb7cded0ede718ee193173838d4275bc8b4a528086decc3</citedby><cites>FETCH-LOGICAL-c725t-58dad2a2a7f95915bdfb7cded0ede718ee193173838d4275bc8b4a528086decc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029923/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029923/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27649537$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mandell, Mercedes Susan</contributor><creatorcontrib>White, Diana</creatorcontrib><creatorcontrib>Coombe, Dennis</creatorcontrib><creatorcontrib>Rezania, Vahid</creatorcontrib><creatorcontrib>Tuszynski, Jack</creatorcontrib><title>Building a 3D Virtual Liver: Methods for Simulating Blood Flow and Hepatic Clearance on 3D Structures</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Approximation</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Blood</subject><subject>Blood flow</subject><subject>Chemical compounds</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Differential equations</subject><subject>Dogs</subject><subject>Drug metabolism</subject><subject>Drugs</subject><subject>Fluid flow</subject><subject>Hemodynamics</subject><subject>Hepatic vein</subject><subject>Humans</subject><subject>Liver</subject><subject>Liver - anatomy & histology</subject><subject>Liver - blood supply</subject><subject>Liver - metabolism</subject><subject>Liver Circulation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Methods</subject><subject>Models, Anatomic</subject><subject>Models, Biological</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Pharmaceutical Preparations - metabolism</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Veins & arteries</subject><subject>White, Dennis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01vEzEQhlcIREvhHyBYCQnBIcH2ftjLAakNlEYKqkSgV2vWnk0cOetg7xb49zjNtkpQD5UPtsbPvJ4PT5K8pGRMM04_rFzvW7DjjWtxTGjJGC0eJce0ytioZCR7vHc-Sp6FsCKkyERZPk2OGC_zqsj4cYJnvbHatIsU0uxzemV814NNZ-Ya_cf0G3ZLp0PaOJ_Ozbq30G3RM-ucTs-t-51Cq9ML3ES7SicWwUOrMHXtVmze-V51vcfwPHnSgA34YthPkp_nX35MLkazy6_TyelspDgrulEhNGgGDHhTFRUtat3UXGnUBDVyKhBjRpRnIhM6Z7yolahzKJggotSoVHaSvN7pbqwLcqhQkFQwyoUoGY_EdEdoByu58WYN_q90YOSNwfmFBB-TsSiFrkrCiQLRlHksMNQCawAEUTY5pxC1Pg2v9fUatcK282APRA9vWrOUC3ctC8KqimVR4N0g4N2vHkMn1yYotBZadP1N3LyiFWfVQ1CWlyXNWETf_IfeX4iBWkDM1bSNiyGqrag8jdmJKqeERmp8DxWXxrVR8ec1JtoPHN4fOESmwz_dAvoQ5HT-_eHs5dUh-3aPXSLYbhmc7Tvj2nAI5jtQeReCx-auH5TI7eDcVkNuB0cOgxPdXu338s7pdlKyf1GoEc4</recordid><startdate>20160920</startdate><enddate>20160920</enddate><creator>White, Diana</creator><creator>Coombe, Dennis</creator><creator>Rezania, Vahid</creator><creator>Tuszynski, Jack</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160920</creationdate><title>Building a 3D Virtual Liver: Methods for Simulating Blood Flow and Hepatic Clearance on 3D Structures</title><author>White, Diana ; Coombe, Dennis ; Rezania, Vahid ; Tuszynski, Jack</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-58dad2a2a7f95915bdfb7cded0ede718ee193173838d4275bc8b4a528086decc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Approximation</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Blood</topic><topic>Blood flow</topic><topic>Chemical compounds</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Differential equations</topic><topic>Dogs</topic><topic>Drug metabolism</topic><topic>Drugs</topic><topic>Fluid flow</topic><topic>Hemodynamics</topic><topic>Hepatic vein</topic><topic>Humans</topic><topic>Liver</topic><topic>Liver - anatomy & histology</topic><topic>Liver - blood supply</topic><topic>Liver - metabolism</topic><topic>Liver Circulation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Methods</topic><topic>Models, Anatomic</topic><topic>Models, Biological</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Pharmaceutical Preparations - metabolism</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Veins & arteries</topic><topic>White, Dennis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Diana</creatorcontrib><creatorcontrib>Coombe, Dennis</creatorcontrib><creatorcontrib>Rezania, Vahid</creatorcontrib><creatorcontrib>Tuszynski, Jack</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Diana</au><au>Coombe, Dennis</au><au>Rezania, Vahid</au><au>Tuszynski, Jack</au><au>Mandell, Mercedes Susan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building a 3D Virtual Liver: Methods for Simulating Blood Flow and Hepatic Clearance on 3D Structures</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-09-20</date><risdate>2016</risdate><volume>11</volume><issue>9</issue><spage>e0162215</spage><epage>e0162215</epage><pages>e0162215-e0162215</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27649537</pmid><doi>10.1371/journal.pone.0162215</doi><tpages>e0162215</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-09, Vol.11 (9), p.e0162215-e0162215 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1821788627 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Animals Approximation Biology Biology and Life Sciences Biomedical engineering Blood Blood flow Chemical compounds Computational fluid dynamics Computer applications Computer Simulation Differential equations Dogs Drug metabolism Drugs Fluid flow Hemodynamics Hepatic vein Humans Liver Liver - anatomy & histology Liver - blood supply Liver - metabolism Liver Circulation Mathematical analysis Mathematical models Medicine and Health Sciences Metabolism Methods Models, Anatomic Models, Biological Optimization Partial differential equations Pharmaceutical Preparations - metabolism Physical Sciences Physiological aspects Physiology Veins & arteries White, Dennis |
title | Building a 3D Virtual Liver: Methods for Simulating Blood Flow and Hepatic Clearance on 3D Structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20a%203D%20Virtual%20Liver:%20Methods%20for%20Simulating%20Blood%20Flow%20and%20Hepatic%20Clearance%20on%203D%20Structures&rft.jtitle=PloS%20one&rft.au=White,%20Diana&rft.date=2016-09-20&rft.volume=11&rft.issue=9&rft.spage=e0162215&rft.epage=e0162215&rft.pages=e0162215-e0162215&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0162215&rft_dat=%3Cgale_plos_%3EA471894101%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1821788627&rft_id=info:pmid/27649537&rft_galeid=A471894101&rft_doaj_id=oai_doaj_org_article_8d96070ca8f64016ab8ebaaea86f471a&rfr_iscdi=true |