Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters

Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2016-08, Vol.12 (8), p.e1006224
Hauptverfasser: Lavender, Christopher A, Cannady, Kimberly R, Hoffman, Jackson A, Trotter, Kevin W, Gilchrist, Daniel A, Bennett, Brian D, Burkholder, Adam B, Burd, Craig J, Fargo, David C, Archer, Trevor K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page e1006224
container_title PLoS genetics
container_volume 12
creator Lavender, Christopher A
Cannady, Kimberly R
Hoffman, Jackson A
Trotter, Kevin W
Gilchrist, Daniel A
Bennett, Brian D
Burkholder, Adam B
Burd, Craig J
Fargo, David C
Archer, Trevor K
description Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment.
doi_str_mv 10.1371/journal.pgen.1006224
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1820284947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A479405306</galeid><doaj_id>oai_doaj_org_article_2f0d439aff5d4fce89f99d8a68cb7f3b</doaj_id><sourcerecordid>A479405306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c759t-7a94b3a276acb9e1974705b3ae053634bad2706b6c274086109b6c6b6971f3603</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEoqXwDxBEQkJw2MWJnTi-IK22H1QqFNHC1Zo4k11Xib3YToErvxyn3VYN6gHkg-3xM689M54keZ6ReUZ59u7CDs5AN9-s0MwzQso8Zw-S3awo6Iwzwh7eWe8kT7y_IIQWleCPk52cs4rTotxNfu_bH8YHh9CnCxO0R-MxPXdgvHJ6E7Q16WeHjVbBp0dobK9VeogQBoc-PV9DSPex1QbTsMb0bINKt5FYrp3tIWiTHphL7azp0YQ0wh-h76HTMKra3gZ0_mnyqIXO47PtvJd8PTw4X36YnZweHS8XJzPFCxFmHASrKeS8BFULzARnnBTRgqSgJWU1NDknZV2qGB2pyoyIuI57wbOWloTuJS-vdTed9XKbPi-zKid5xQTjkTi-JhoLF3LjdA_ul7Sg5ZXBupUEF7TqUOYtaRgV0LZFw1qFlWiFaCooK1XzltZR6_32tqHusVExfgfdRHR6YvRaruylZILnNB-f-2Yr4Oz3AX2QvfYKuw4M2uHq3byqOBEj-uov9P7ottQKYgDatDbeq0ZRuWBcsJhGUkZqfg8VR4Ox9NbEYkf7xOHtxCEyAX-GFQzey-OzL__Bfvp39vTblH19h10jdGHtbTeM39dPQXYNKme9d9jeFiQjcmyrm8zJsa3ktq2i24u7xbx1uukj-gd5iR2y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820284947</pqid></control><display><type>article</type><title>Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Lavender, Christopher A ; Cannady, Kimberly R ; Hoffman, Jackson A ; Trotter, Kevin W ; Gilchrist, Daniel A ; Bennett, Brian D ; Burkholder, Adam B ; Burd, Craig J ; Fargo, David C ; Archer, Trevor K</creator><contributor>van Steensel, Bas</contributor><creatorcontrib>Lavender, Christopher A ; Cannady, Kimberly R ; Hoffman, Jackson A ; Trotter, Kevin W ; Gilchrist, Daniel A ; Bennett, Brian D ; Burkholder, Adam B ; Burd, Craig J ; Fargo, David C ; Archer, Trevor K ; van Steensel, Bas</creatorcontrib><description>Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1006224</identifier><identifier>PMID: 27487356</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antisense Elements (Genetics) - biosynthesis ; Antisense Elements (Genetics) - genetics ; Biology and life sciences ; Breast cancer ; Chromatin ; Chromatin - genetics ; CpG Islands - genetics ; Data analysis ; Epigenetics ; Experiments ; Gene expression ; Gene Expression Regulation, Fungal ; Genomics ; Histone Code - genetics ; Histones - genetics ; Humans ; Nuclear Proteins - biosynthesis ; Nuclear Proteins - genetics ; Nucleosomes - genetics ; Observations ; Physiological aspects ; Promoter Regions, Genetic ; Protein Binding - genetics ; Research and Analysis Methods ; Sequence Alignment ; Transcription (Genetics) ; Transcription factors ; Transcription, Genetic</subject><ispartof>PLoS genetics, 2016-08, Vol.12 (8), p.e1006224</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Lavender CA, Cannady KR, Hoffman JA, Trotter KW, Gilchrist DA, Bennett BD, et al. (2016) Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters. PLoS Genet 12(8): e1006224. doi:10.1371/journal.pgen.1006224</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Lavender CA, Cannady KR, Hoffman JA, Trotter KW, Gilchrist DA, Bennett BD, et al. (2016) Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters. PLoS Genet 12(8): e1006224. doi:10.1371/journal.pgen.1006224</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c759t-7a94b3a276acb9e1974705b3ae053634bad2706b6c274086109b6c6b6971f3603</citedby><cites>FETCH-LOGICAL-c759t-7a94b3a276acb9e1974705b3ae053634bad2706b6c274086109b6c6b6971f3603</cites><orcidid>0000-0003-4672-834X ; 0000-0002-6899-6751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4972320/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4972320/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27487356$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>van Steensel, Bas</contributor><creatorcontrib>Lavender, Christopher A</creatorcontrib><creatorcontrib>Cannady, Kimberly R</creatorcontrib><creatorcontrib>Hoffman, Jackson A</creatorcontrib><creatorcontrib>Trotter, Kevin W</creatorcontrib><creatorcontrib>Gilchrist, Daniel A</creatorcontrib><creatorcontrib>Bennett, Brian D</creatorcontrib><creatorcontrib>Burkholder, Adam B</creatorcontrib><creatorcontrib>Burd, Craig J</creatorcontrib><creatorcontrib>Fargo, David C</creatorcontrib><creatorcontrib>Archer, Trevor K</creatorcontrib><title>Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment.</description><subject>Antisense Elements (Genetics) - biosynthesis</subject><subject>Antisense Elements (Genetics) - genetics</subject><subject>Biology and life sciences</subject><subject>Breast cancer</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>CpG Islands - genetics</subject><subject>Data analysis</subject><subject>Epigenetics</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genomics</subject><subject>Histone Code - genetics</subject><subject>Histones - genetics</subject><subject>Humans</subject><subject>Nuclear Proteins - biosynthesis</subject><subject>Nuclear Proteins - genetics</subject><subject>Nucleosomes - genetics</subject><subject>Observations</subject><subject>Physiological aspects</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding - genetics</subject><subject>Research and Analysis Methods</subject><subject>Sequence Alignment</subject><subject>Transcription (Genetics)</subject><subject>Transcription factors</subject><subject>Transcription, Genetic</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEoqXwDxBEQkJw2MWJnTi-IK22H1QqFNHC1Zo4k11Xib3YToErvxyn3VYN6gHkg-3xM689M54keZ6ReUZ59u7CDs5AN9-s0MwzQso8Zw-S3awo6Iwzwh7eWe8kT7y_IIQWleCPk52cs4rTotxNfu_bH8YHh9CnCxO0R-MxPXdgvHJ6E7Q16WeHjVbBp0dobK9VeogQBoc-PV9DSPex1QbTsMb0bINKt5FYrp3tIWiTHphL7azp0YQ0wh-h76HTMKra3gZ0_mnyqIXO47PtvJd8PTw4X36YnZweHS8XJzPFCxFmHASrKeS8BFULzARnnBTRgqSgJWU1NDknZV2qGB2pyoyIuI57wbOWloTuJS-vdTed9XKbPi-zKid5xQTjkTi-JhoLF3LjdA_ul7Sg5ZXBupUEF7TqUOYtaRgV0LZFw1qFlWiFaCooK1XzltZR6_32tqHusVExfgfdRHR6YvRaruylZILnNB-f-2Yr4Oz3AX2QvfYKuw4M2uHq3byqOBEj-uov9P7ottQKYgDatDbeq0ZRuWBcsJhGUkZqfg8VR4Ox9NbEYkf7xOHtxCEyAX-GFQzey-OzL__Bfvp39vTblH19h10jdGHtbTeM39dPQXYNKme9d9jeFiQjcmyrm8zJsa3ktq2i24u7xbx1uukj-gd5iR2y</recordid><startdate>20160803</startdate><enddate>20160803</enddate><creator>Lavender, Christopher A</creator><creator>Cannady, Kimberly R</creator><creator>Hoffman, Jackson A</creator><creator>Trotter, Kevin W</creator><creator>Gilchrist, Daniel A</creator><creator>Bennett, Brian D</creator><creator>Burkholder, Adam B</creator><creator>Burd, Craig J</creator><creator>Fargo, David C</creator><creator>Archer, Trevor K</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4672-834X</orcidid><orcidid>https://orcid.org/0000-0002-6899-6751</orcidid></search><sort><creationdate>20160803</creationdate><title>Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters</title><author>Lavender, Christopher A ; Cannady, Kimberly R ; Hoffman, Jackson A ; Trotter, Kevin W ; Gilchrist, Daniel A ; Bennett, Brian D ; Burkholder, Adam B ; Burd, Craig J ; Fargo, David C ; Archer, Trevor K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c759t-7a94b3a276acb9e1974705b3ae053634bad2706b6c274086109b6c6b6971f3603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antisense Elements (Genetics) - biosynthesis</topic><topic>Antisense Elements (Genetics) - genetics</topic><topic>Biology and life sciences</topic><topic>Breast cancer</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>CpG Islands - genetics</topic><topic>Data analysis</topic><topic>Epigenetics</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genomics</topic><topic>Histone Code - genetics</topic><topic>Histones - genetics</topic><topic>Humans</topic><topic>Nuclear Proteins - biosynthesis</topic><topic>Nuclear Proteins - genetics</topic><topic>Nucleosomes - genetics</topic><topic>Observations</topic><topic>Physiological aspects</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding - genetics</topic><topic>Research and Analysis Methods</topic><topic>Sequence Alignment</topic><topic>Transcription (Genetics)</topic><topic>Transcription factors</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lavender, Christopher A</creatorcontrib><creatorcontrib>Cannady, Kimberly R</creatorcontrib><creatorcontrib>Hoffman, Jackson A</creatorcontrib><creatorcontrib>Trotter, Kevin W</creatorcontrib><creatorcontrib>Gilchrist, Daniel A</creatorcontrib><creatorcontrib>Bennett, Brian D</creatorcontrib><creatorcontrib>Burkholder, Adam B</creatorcontrib><creatorcontrib>Burd, Craig J</creatorcontrib><creatorcontrib>Fargo, David C</creatorcontrib><creatorcontrib>Archer, Trevor K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lavender, Christopher A</au><au>Cannady, Kimberly R</au><au>Hoffman, Jackson A</au><au>Trotter, Kevin W</au><au>Gilchrist, Daniel A</au><au>Bennett, Brian D</au><au>Burkholder, Adam B</au><au>Burd, Craig J</au><au>Fargo, David C</au><au>Archer, Trevor K</au><au>van Steensel, Bas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2016-08-03</date><risdate>2016</risdate><volume>12</volume><issue>8</issue><spage>e1006224</spage><pages>e1006224-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27487356</pmid><doi>10.1371/journal.pgen.1006224</doi><orcidid>https://orcid.org/0000-0003-4672-834X</orcidid><orcidid>https://orcid.org/0000-0002-6899-6751</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2016-08, Vol.12 (8), p.e1006224
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1820284947
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Antisense Elements (Genetics) - biosynthesis
Antisense Elements (Genetics) - genetics
Biology and life sciences
Breast cancer
Chromatin
Chromatin - genetics
CpG Islands - genetics
Data analysis
Epigenetics
Experiments
Gene expression
Gene Expression Regulation, Fungal
Genomics
Histone Code - genetics
Histones - genetics
Humans
Nuclear Proteins - biosynthesis
Nuclear Proteins - genetics
Nucleosomes - genetics
Observations
Physiological aspects
Promoter Regions, Genetic
Protein Binding - genetics
Research and Analysis Methods
Sequence Alignment
Transcription (Genetics)
Transcription factors
Transcription, Genetic
title Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A07%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Downstream%20Antisense%20Transcription%20Predicts%20Genomic%20Features%20That%20Define%20the%20Specific%20Chromatin%20Environment%20at%20Mammalian%20Promoters&rft.jtitle=PLoS%20genetics&rft.au=Lavender,%20Christopher%20A&rft.date=2016-08-03&rft.volume=12&rft.issue=8&rft.spage=e1006224&rft.pages=e1006224-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1006224&rft_dat=%3Cgale_plos_%3EA479405306%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1820284947&rft_id=info:pmid/27487356&rft_galeid=A479405306&rft_doaj_id=oai_doaj_org_article_2f0d439aff5d4fce89f99d8a68cb7f3b&rfr_iscdi=true