Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1
During meiosis, programmed double strand breaks (DSBs) are repaired preferentially between homologs to generate crossovers that promote proper chromosome segregation at Meiosis I. In many organisms, there are two strand exchange proteins, Rad51 and the meiosis-specific Dmc1, required for interhomolo...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2016-08, Vol.12 (8), p.e1006226-e1006226 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1006226 |
---|---|
container_issue | 8 |
container_start_page | e1006226 |
container_title | PLoS genetics |
container_volume | 12 |
creator | Callender, Tracy L Laureau, Raphaelle Wan, Lihong Chen, Xiangyu Sandhu, Rima Laljee, Saif Zhou, Sai Suhandynata, Ray T Prugar, Evelyn Gaines, William A Kwon, YoungHo Börner, G Valentin Nicolas, Alain Neiman, Aaron M Hollingsworth, Nancy M |
description | During meiosis, programmed double strand breaks (DSBs) are repaired preferentially between homologs to generate crossovers that promote proper chromosome segregation at Meiosis I. In many organisms, there are two strand exchange proteins, Rad51 and the meiosis-specific Dmc1, required for interhomolog (IH) bias. This bias requires the presence, but not the strand exchange activity of Rad51, while Dmc1 is responsible for the bulk of meiotic recombination. How these activities are regulated is less well established. In dmc1Δ mutants, Rad51 is actively inhibited, thereby resulting in prophase arrest due to unrepaired DSBs triggering the meiotic recombination checkpoint. This inhibition is dependent upon the meiosis-specific kinase Mek1 and occurs through two different mechanisms that prevent complex formation with the Rad51 accessory factor Rad54: (i) phosphorylation of Rad54 by Mek1 and (ii) binding of Rad51 by the meiosis-specific protein Hed1. An open question has been why inhibition of Mek1 affects Hed1 repression of Rad51. This work shows that Hed1 is a direct substrate of Mek1. Phosphorylation of Hed1 at threonine 40 helps suppress Rad51 activity in dmc1Δ mutants by promoting Hed1 protein stability. Rad51-mediated recombination occurring in the absence of Hed1 phosphorylation results in a significant increase in non-exchange chromosomes despite wild-type levels of crossovers, confirming previous results indicating a defect in crossover assurance. We propose that Rad51 function in meiosis is regulated in part by the coordinated phosphorylation of Rad54 and Hed1 by Mek1. |
doi_str_mv | 10.1371/journal.pgen.1006226 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1820284936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A479405308</galeid><doaj_id>oai_doaj_org_article_bf68f236880c43898d13d3bb548fe782</doaj_id><sourcerecordid>A479405308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c859t-32d51c3b046a79f93cbdf50519b9b43c36317c7bf764d5ed0874b60497fc055e3</originalsourceid><addsrcrecordid>eNqVk11v0zAUhiMEYqPwDxBEQkLsouU4tmPnBqkaH63UMVQ-JK4sx3FSlzQucVLov8dZs6mZdjHkC1vHz_se-9gnCJ4jmCDM0Nu1betKlpNtoasJAoijKH4QnCJK8ZgRIA-P1ifBE-fWAJjyhD0OTiJGOAYgp8HyQv9C4Xv7pwqXumhL2WgXLmVGUThVjdmZZh9mbW2qIvyppWvCC22sMy5M9-GXlXXbla33XmVsFdo8nOkMPQ0e5bJ0-lk_j4LvHz98O5-NF5ef5ufTxVhxmjRjHPkkCqdAYsmSPMEqzXIKFCVpkhKscIwRUyzNWUwyqjPgjKQxkITlCijVeBS8PPhuS-tEXw4nEI8g4iTx-lEwPxCZlWuxrc1G1nthpRFXAVsXQtaNUaUWaR7zPMIx56AI5gnPEM5wmlLCc8145L3e9dnadKMzpaumluXAdLhTmZUo7E74A0PMwBucHQxWt2Sz6UJ0MfDPSuOY75Bn3_TJavu71a4RG-OULktZadte3ZFxziIW3wOFBAgD6Fxf3ULvLlpPFdLXxVS59ddRnamYEpYQoBi4pyZ3UH5kemOUrXRufHwgOBsIPNPov00hW-fE_OvyP9jP92cvfwzZ10fsSsuyWTlbtt3vdUOQHEBVW-dqnd88GALRdd915UTXfaLvPi97cfxHbkTX7Yb_ASxkJMw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820284936</pqid></control><display><type>article</type><title>Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Callender, Tracy L ; Laureau, Raphaelle ; Wan, Lihong ; Chen, Xiangyu ; Sandhu, Rima ; Laljee, Saif ; Zhou, Sai ; Suhandynata, Ray T ; Prugar, Evelyn ; Gaines, William A ; Kwon, YoungHo ; Börner, G Valentin ; Nicolas, Alain ; Neiman, Aaron M ; Hollingsworth, Nancy M</creator><creatorcontrib>Callender, Tracy L ; Laureau, Raphaelle ; Wan, Lihong ; Chen, Xiangyu ; Sandhu, Rima ; Laljee, Saif ; Zhou, Sai ; Suhandynata, Ray T ; Prugar, Evelyn ; Gaines, William A ; Kwon, YoungHo ; Börner, G Valentin ; Nicolas, Alain ; Neiman, Aaron M ; Hollingsworth, Nancy M</creatorcontrib><description>During meiosis, programmed double strand breaks (DSBs) are repaired preferentially between homologs to generate crossovers that promote proper chromosome segregation at Meiosis I. In many organisms, there are two strand exchange proteins, Rad51 and the meiosis-specific Dmc1, required for interhomolog (IH) bias. This bias requires the presence, but not the strand exchange activity of Rad51, while Dmc1 is responsible for the bulk of meiotic recombination. How these activities are regulated is less well established. In dmc1Δ mutants, Rad51 is actively inhibited, thereby resulting in prophase arrest due to unrepaired DSBs triggering the meiotic recombination checkpoint. This inhibition is dependent upon the meiosis-specific kinase Mek1 and occurs through two different mechanisms that prevent complex formation with the Rad51 accessory factor Rad54: (i) phosphorylation of Rad54 by Mek1 and (ii) binding of Rad51 by the meiosis-specific protein Hed1. An open question has been why inhibition of Mek1 affects Hed1 repression of Rad51. This work shows that Hed1 is a direct substrate of Mek1. Phosphorylation of Hed1 at threonine 40 helps suppress Rad51 activity in dmc1Δ mutants by promoting Hed1 protein stability. Rad51-mediated recombination occurring in the absence of Hed1 phosphorylation results in a significant increase in non-exchange chromosomes despite wild-type levels of crossovers, confirming previous results indicating a defect in crossover assurance. We propose that Rad51 function in meiosis is regulated in part by the coordinated phosphorylation of Rad54 and Hed1 by Mek1.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1006226</identifier><identifier>PMID: 27483004</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bias ; Biology and Life Sciences ; Cell Cycle Proteins - genetics ; Cell division ; Chromosome Segregation - genetics ; Chromosomes ; Deoxyribonucleic acid ; DNA ; DNA Breaks, Double-Stranded ; DNA Helicases - genetics ; DNA Repair - genetics ; DNA Repair Enzymes - genetics ; DNA-Binding Proteins - genetics ; Experiments ; Gene expression ; Genetic aspects ; Genomes ; Homologous Recombination - genetics ; Kinases ; Life Sciences ; MAP Kinase Kinase 1 - genetics ; Meiosis ; Meiosis - genetics ; Mitosis - genetics ; Mutant Proteins - genetics ; Observations ; Phosphorylation ; Proteins ; Rad51 Recombinase - genetics ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Yeast</subject><ispartof>PLoS genetics, 2016-08, Vol.12 (8), p.e1006226-e1006226</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Callender TL, Laureau R, Wan L, Chen X, Sandhu R, Laljee S, et al. (2016) Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1. PLoS Genet 12(8): e1006226. doi:10.1371/journal.pgen.1006226</rights><rights>Attribution</rights><rights>2016 Callender et al 2016 Callender et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Callender TL, Laureau R, Wan L, Chen X, Sandhu R, Laljee S, et al. (2016) Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1. PLoS Genet 12(8): e1006226. doi:10.1371/journal.pgen.1006226</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c859t-32d51c3b046a79f93cbdf50519b9b43c36317c7bf764d5ed0874b60497fc055e3</citedby><cites>FETCH-LOGICAL-c859t-32d51c3b046a79f93cbdf50519b9b43c36317c7bf764d5ed0874b60497fc055e3</cites><orcidid>0000-0003-3300-6444 ; 0000-0003-0086-8857 ; 0000-0002-4474-8761 ; 0000-0001-9685-7161 ; 0000-0002-4284-8507 ; 0000-0003-3206-4108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970670/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970670/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27483004$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01375668$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Callender, Tracy L</creatorcontrib><creatorcontrib>Laureau, Raphaelle</creatorcontrib><creatorcontrib>Wan, Lihong</creatorcontrib><creatorcontrib>Chen, Xiangyu</creatorcontrib><creatorcontrib>Sandhu, Rima</creatorcontrib><creatorcontrib>Laljee, Saif</creatorcontrib><creatorcontrib>Zhou, Sai</creatorcontrib><creatorcontrib>Suhandynata, Ray T</creatorcontrib><creatorcontrib>Prugar, Evelyn</creatorcontrib><creatorcontrib>Gaines, William A</creatorcontrib><creatorcontrib>Kwon, YoungHo</creatorcontrib><creatorcontrib>Börner, G Valentin</creatorcontrib><creatorcontrib>Nicolas, Alain</creatorcontrib><creatorcontrib>Neiman, Aaron M</creatorcontrib><creatorcontrib>Hollingsworth, Nancy M</creatorcontrib><title>Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>During meiosis, programmed double strand breaks (DSBs) are repaired preferentially between homologs to generate crossovers that promote proper chromosome segregation at Meiosis I. In many organisms, there are two strand exchange proteins, Rad51 and the meiosis-specific Dmc1, required for interhomolog (IH) bias. This bias requires the presence, but not the strand exchange activity of Rad51, while Dmc1 is responsible for the bulk of meiotic recombination. How these activities are regulated is less well established. In dmc1Δ mutants, Rad51 is actively inhibited, thereby resulting in prophase arrest due to unrepaired DSBs triggering the meiotic recombination checkpoint. This inhibition is dependent upon the meiosis-specific kinase Mek1 and occurs through two different mechanisms that prevent complex formation with the Rad51 accessory factor Rad54: (i) phosphorylation of Rad54 by Mek1 and (ii) binding of Rad51 by the meiosis-specific protein Hed1. An open question has been why inhibition of Mek1 affects Hed1 repression of Rad51. This work shows that Hed1 is a direct substrate of Mek1. Phosphorylation of Hed1 at threonine 40 helps suppress Rad51 activity in dmc1Δ mutants by promoting Hed1 protein stability. Rad51-mediated recombination occurring in the absence of Hed1 phosphorylation results in a significant increase in non-exchange chromosomes despite wild-type levels of crossovers, confirming previous results indicating a defect in crossover assurance. We propose that Rad51 function in meiosis is regulated in part by the coordinated phosphorylation of Rad54 and Hed1 by Mek1.</description><subject>Bias</subject><subject>Biology and Life Sciences</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell division</subject><subject>Chromosome Segregation - genetics</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Helicases - genetics</subject><subject>DNA Repair - genetics</subject><subject>DNA Repair Enzymes - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Homologous Recombination - genetics</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>MAP Kinase Kinase 1 - genetics</subject><subject>Meiosis</subject><subject>Meiosis - genetics</subject><subject>Mitosis - genetics</subject><subject>Mutant Proteins - genetics</subject><subject>Observations</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Rad51 Recombinase - genetics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11v0zAUhiMEYqPwDxBEQkLsouU4tmPnBqkaH63UMVQ-JK4sx3FSlzQucVLov8dZs6mZdjHkC1vHz_se-9gnCJ4jmCDM0Nu1betKlpNtoasJAoijKH4QnCJK8ZgRIA-P1ifBE-fWAJjyhD0OTiJGOAYgp8HyQv9C4Xv7pwqXumhL2WgXLmVGUThVjdmZZh9mbW2qIvyppWvCC22sMy5M9-GXlXXbla33XmVsFdo8nOkMPQ0e5bJ0-lk_j4LvHz98O5-NF5ef5ufTxVhxmjRjHPkkCqdAYsmSPMEqzXIKFCVpkhKscIwRUyzNWUwyqjPgjKQxkITlCijVeBS8PPhuS-tEXw4nEI8g4iTx-lEwPxCZlWuxrc1G1nthpRFXAVsXQtaNUaUWaR7zPMIx56AI5gnPEM5wmlLCc8145L3e9dnadKMzpaumluXAdLhTmZUo7E74A0PMwBucHQxWt2Sz6UJ0MfDPSuOY75Bn3_TJavu71a4RG-OULktZadte3ZFxziIW3wOFBAgD6Fxf3ULvLlpPFdLXxVS59ddRnamYEpYQoBi4pyZ3UH5kemOUrXRufHwgOBsIPNPov00hW-fE_OvyP9jP92cvfwzZ10fsSsuyWTlbtt3vdUOQHEBVW-dqnd88GALRdd915UTXfaLvPi97cfxHbkTX7Yb_ASxkJMw</recordid><startdate>20160802</startdate><enddate>20160802</enddate><creator>Callender, Tracy L</creator><creator>Laureau, Raphaelle</creator><creator>Wan, Lihong</creator><creator>Chen, Xiangyu</creator><creator>Sandhu, Rima</creator><creator>Laljee, Saif</creator><creator>Zhou, Sai</creator><creator>Suhandynata, Ray T</creator><creator>Prugar, Evelyn</creator><creator>Gaines, William A</creator><creator>Kwon, YoungHo</creator><creator>Börner, G Valentin</creator><creator>Nicolas, Alain</creator><creator>Neiman, Aaron M</creator><creator>Hollingsworth, Nancy M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>M7N</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3300-6444</orcidid><orcidid>https://orcid.org/0000-0003-0086-8857</orcidid><orcidid>https://orcid.org/0000-0002-4474-8761</orcidid><orcidid>https://orcid.org/0000-0001-9685-7161</orcidid><orcidid>https://orcid.org/0000-0002-4284-8507</orcidid><orcidid>https://orcid.org/0000-0003-3206-4108</orcidid></search><sort><creationdate>20160802</creationdate><title>Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1</title><author>Callender, Tracy L ; Laureau, Raphaelle ; Wan, Lihong ; Chen, Xiangyu ; Sandhu, Rima ; Laljee, Saif ; Zhou, Sai ; Suhandynata, Ray T ; Prugar, Evelyn ; Gaines, William A ; Kwon, YoungHo ; Börner, G Valentin ; Nicolas, Alain ; Neiman, Aaron M ; Hollingsworth, Nancy M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c859t-32d51c3b046a79f93cbdf50519b9b43c36317c7bf764d5ed0874b60497fc055e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bias</topic><topic>Biology and Life Sciences</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell division</topic><topic>Chromosome Segregation - genetics</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Helicases - genetics</topic><topic>DNA Repair - genetics</topic><topic>DNA Repair Enzymes - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Homologous Recombination - genetics</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>MAP Kinase Kinase 1 - genetics</topic><topic>Meiosis</topic><topic>Meiosis - genetics</topic><topic>Mitosis - genetics</topic><topic>Mutant Proteins - genetics</topic><topic>Observations</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Rad51 Recombinase - genetics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Callender, Tracy L</creatorcontrib><creatorcontrib>Laureau, Raphaelle</creatorcontrib><creatorcontrib>Wan, Lihong</creatorcontrib><creatorcontrib>Chen, Xiangyu</creatorcontrib><creatorcontrib>Sandhu, Rima</creatorcontrib><creatorcontrib>Laljee, Saif</creatorcontrib><creatorcontrib>Zhou, Sai</creatorcontrib><creatorcontrib>Suhandynata, Ray T</creatorcontrib><creatorcontrib>Prugar, Evelyn</creatorcontrib><creatorcontrib>Gaines, William A</creatorcontrib><creatorcontrib>Kwon, YoungHo</creatorcontrib><creatorcontrib>Börner, G Valentin</creatorcontrib><creatorcontrib>Nicolas, Alain</creatorcontrib><creatorcontrib>Neiman, Aaron M</creatorcontrib><creatorcontrib>Hollingsworth, Nancy M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Callender, Tracy L</au><au>Laureau, Raphaelle</au><au>Wan, Lihong</au><au>Chen, Xiangyu</au><au>Sandhu, Rima</au><au>Laljee, Saif</au><au>Zhou, Sai</au><au>Suhandynata, Ray T</au><au>Prugar, Evelyn</au><au>Gaines, William A</au><au>Kwon, YoungHo</au><au>Börner, G Valentin</au><au>Nicolas, Alain</au><au>Neiman, Aaron M</au><au>Hollingsworth, Nancy M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2016-08-02</date><risdate>2016</risdate><volume>12</volume><issue>8</issue><spage>e1006226</spage><epage>e1006226</epage><pages>e1006226-e1006226</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>During meiosis, programmed double strand breaks (DSBs) are repaired preferentially between homologs to generate crossovers that promote proper chromosome segregation at Meiosis I. In many organisms, there are two strand exchange proteins, Rad51 and the meiosis-specific Dmc1, required for interhomolog (IH) bias. This bias requires the presence, but not the strand exchange activity of Rad51, while Dmc1 is responsible for the bulk of meiotic recombination. How these activities are regulated is less well established. In dmc1Δ mutants, Rad51 is actively inhibited, thereby resulting in prophase arrest due to unrepaired DSBs triggering the meiotic recombination checkpoint. This inhibition is dependent upon the meiosis-specific kinase Mek1 and occurs through two different mechanisms that prevent complex formation with the Rad51 accessory factor Rad54: (i) phosphorylation of Rad54 by Mek1 and (ii) binding of Rad51 by the meiosis-specific protein Hed1. An open question has been why inhibition of Mek1 affects Hed1 repression of Rad51. This work shows that Hed1 is a direct substrate of Mek1. Phosphorylation of Hed1 at threonine 40 helps suppress Rad51 activity in dmc1Δ mutants by promoting Hed1 protein stability. Rad51-mediated recombination occurring in the absence of Hed1 phosphorylation results in a significant increase in non-exchange chromosomes despite wild-type levels of crossovers, confirming previous results indicating a defect in crossover assurance. We propose that Rad51 function in meiosis is regulated in part by the coordinated phosphorylation of Rad54 and Hed1 by Mek1.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27483004</pmid><doi>10.1371/journal.pgen.1006226</doi><orcidid>https://orcid.org/0000-0003-3300-6444</orcidid><orcidid>https://orcid.org/0000-0003-0086-8857</orcidid><orcidid>https://orcid.org/0000-0002-4474-8761</orcidid><orcidid>https://orcid.org/0000-0001-9685-7161</orcidid><orcidid>https://orcid.org/0000-0002-4284-8507</orcidid><orcidid>https://orcid.org/0000-0003-3206-4108</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2016-08, Vol.12 (8), p.e1006226-e1006226 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1820284936 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Bias Biology and Life Sciences Cell Cycle Proteins - genetics Cell division Chromosome Segregation - genetics Chromosomes Deoxyribonucleic acid DNA DNA Breaks, Double-Stranded DNA Helicases - genetics DNA Repair - genetics DNA Repair Enzymes - genetics DNA-Binding Proteins - genetics Experiments Gene expression Genetic aspects Genomes Homologous Recombination - genetics Kinases Life Sciences MAP Kinase Kinase 1 - genetics Meiosis Meiosis - genetics Mitosis - genetics Mutant Proteins - genetics Observations Phosphorylation Proteins Rad51 Recombinase - genetics Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - genetics Yeast |
title | Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mek1%20Down%20Regulates%20Rad51%20Activity%20during%20Yeast%20Meiosis%20by%20Phosphorylation%20of%20Hed1&rft.jtitle=PLoS%20genetics&rft.au=Callender,%20Tracy%20L&rft.date=2016-08-02&rft.volume=12&rft.issue=8&rft.spage=e1006226&rft.epage=e1006226&rft.pages=e1006226-e1006226&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1006226&rft_dat=%3Cgale_plos_%3EA479405308%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1820284936&rft_id=info:pmid/27483004&rft_galeid=A479405308&rft_doaj_id=oai_doaj_org_article_bf68f236880c43898d13d3bb548fe782&rfr_iscdi=true |