A Network-Based Data Integration Approach to Support Drug Repurposing and Multi-Target Therapies in Triple Negative Breast Cancer
The integration of data and knowledge from heterogeneous sources can be a key success factor in drug design, drug repurposing and multi-target therapies. In this context, biological networks provide a useful instrument to highlight the relationships and to model the phenomena underlying therapeutic...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-09, Vol.11 (9), p.e0162407-e0162407 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0162407 |
---|---|
container_issue | 9 |
container_start_page | e0162407 |
container_title | PloS one |
container_volume | 11 |
creator | Vitali, Francesca Cohen, Laurie D Demartini, Andrea Amato, Angela Eterno, Vincenzo Zambelli, Alberto Bellazzi, Riccardo |
description | The integration of data and knowledge from heterogeneous sources can be a key success factor in drug design, drug repurposing and multi-target therapies. In this context, biological networks provide a useful instrument to highlight the relationships and to model the phenomena underlying therapeutic action in cancer. In our work, we applied network-based modeling within a novel bioinformatics pipeline to identify promising multi-target drugs. Given a certain tumor type/subtype, we derive a disease-specific Protein-Protein Interaction (PPI) network by combining different data-bases and knowledge repositories. Next, the application of suitable graph-based algorithms allows selecting a set of potentially interesting combinations of drug targets. A list of drug candidates is then extracted by applying a recent data fusion approach based on matrix tri-factorization. Available knowledge about selected drugs mechanisms of action is finally exploited to identify the most promising candidates for planning in vitro studies. We applied this approach to the case of Triple Negative Breast Cancer (TNBC), a subtype of breast cancer whose biology is poorly understood and that lacks of specific molecular targets. Our "in-silico" findings have been confirmed by a number of in vitro experiments, whose results demonstrated the ability of the method to select candidates for drug repurposing. |
doi_str_mv | 10.1371/journal.pone.0162407 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1819911842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470941128</galeid><doaj_id>oai_doaj_org_article_814264e2804142e48924293e54936841</doaj_id><sourcerecordid>A470941128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-ce454139a071c4259209466c16da899714de9084e27dbaea5500c87992c723fd3</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYqPwDxBYQkJwkWI7zodvJnUdH5UGk7bCrXXmnKYeaRxsZ8Al_xyXdlOLdjHlIpbzvO85OR9J8pzRMctK9u7KDq6DdtzbDseUFVzQ8kFyyGTG04LT7OHO-SB54v0VpXlWFcXj5ICXRcZZUR0mfybkC4af1n1Pj8FjTU4gAJl1ARsHwdiOTPreWdBLEiy5GPreukBO3NCQc-wH11tvuoZAV5PPQxtMOgfXYCDzJTroDXpiOjJ3pm8xBmqi5TWSY4fgA5lCp9E9TR4toPX4bPseJV8_vJ9PP6WnZx9n08lpqkueh1SjyAXLJNCSacFzyakURaFZUUMlZclEjZJWAnlZXwJCnlOqq1JKHvXZos5GycuNb99ar7bV84pVTErGKsEjMdsQtYUr1TuzAvdbWTDq34V1jQIXjG5RVUzwIsaqqIgnFJXkgssMcyGzoop5jpKjbbThcoW1xi44aPdM9790Zqkae61yynNarpN5szVw9seAPqiV8RrbFjq0wzpvXsaoPHb3HijNZZyDIqKv_kPvLsSWaiD-q-kWNqao16ZqIspYd8Z4FanxHVR8alwZHadyYeL9nuDtniAyAX-FBgbv1ezi_P7s2bd99vUOu0Row9LbdliPr98HxQbUznrvcHHbD0bVeqluqqHWS6W2SxVlL3Z7eSu62aLsL-SrGVU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819911842</pqid></control><display><type>article</type><title>A Network-Based Data Integration Approach to Support Drug Repurposing and Multi-Target Therapies in Triple Negative Breast Cancer</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Vitali, Francesca ; Cohen, Laurie D ; Demartini, Andrea ; Amato, Angela ; Eterno, Vincenzo ; Zambelli, Alberto ; Bellazzi, Riccardo</creator><contributor>Ruan, Jianhua</contributor><creatorcontrib>Vitali, Francesca ; Cohen, Laurie D ; Demartini, Andrea ; Amato, Angela ; Eterno, Vincenzo ; Zambelli, Alberto ; Bellazzi, Riccardo ; Ruan, Jianhua</creatorcontrib><description>The integration of data and knowledge from heterogeneous sources can be a key success factor in drug design, drug repurposing and multi-target therapies. In this context, biological networks provide a useful instrument to highlight the relationships and to model the phenomena underlying therapeutic action in cancer. In our work, we applied network-based modeling within a novel bioinformatics pipeline to identify promising multi-target drugs. Given a certain tumor type/subtype, we derive a disease-specific Protein-Protein Interaction (PPI) network by combining different data-bases and knowledge repositories. Next, the application of suitable graph-based algorithms allows selecting a set of potentially interesting combinations of drug targets. A list of drug candidates is then extracted by applying a recent data fusion approach based on matrix tri-factorization. Available knowledge about selected drugs mechanisms of action is finally exploited to identify the most promising candidates for planning in vitro studies. We applied this approach to the case of Triple Negative Breast Cancer (TNBC), a subtype of breast cancer whose biology is poorly understood and that lacks of specific molecular targets. Our "in-silico" findings have been confirmed by a number of in vitro experiments, whose results demonstrated the ability of the method to select candidates for drug repurposing.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0162407</identifier><identifier>PMID: 27632168</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Antineoplastic Agents - therapeutic use ; Bioinformatics ; Biology ; Biology and Life Sciences ; Breast cancer ; Cancer ; Cancer therapies ; Computer and Information Sciences ; Computer programs ; Data integration ; Data processing ; Design factors ; Disease ; Drug development ; Drug therapy ; Drugs ; Female ; Gene expression ; Genomes ; Health aspects ; Humans ; Integration ; Medicine and Health Sciences ; Models, Theoretical ; Monte Carlo Method ; Multisensor fusion ; Physical sciences ; Protein interaction ; Protein-protein interactions ; Proteins ; Repositories ; Research and analysis methods ; Studies ; System theory ; Systems Integration ; Target recognition ; Triple Negative Breast Neoplasms - drug therapy</subject><ispartof>PloS one, 2016-09, Vol.11 (9), p.e0162407-e0162407</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Vitali et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Vitali et al 2016 Vitali et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-ce454139a071c4259209466c16da899714de9084e27dbaea5500c87992c723fd3</citedby><cites>FETCH-LOGICAL-c725t-ce454139a071c4259209466c16da899714de9084e27dbaea5500c87992c723fd3</cites><orcidid>0000-0003-2916-6402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025072/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025072/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27632168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ruan, Jianhua</contributor><creatorcontrib>Vitali, Francesca</creatorcontrib><creatorcontrib>Cohen, Laurie D</creatorcontrib><creatorcontrib>Demartini, Andrea</creatorcontrib><creatorcontrib>Amato, Angela</creatorcontrib><creatorcontrib>Eterno, Vincenzo</creatorcontrib><creatorcontrib>Zambelli, Alberto</creatorcontrib><creatorcontrib>Bellazzi, Riccardo</creatorcontrib><title>A Network-Based Data Integration Approach to Support Drug Repurposing and Multi-Target Therapies in Triple Negative Breast Cancer</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The integration of data and knowledge from heterogeneous sources can be a key success factor in drug design, drug repurposing and multi-target therapies. In this context, biological networks provide a useful instrument to highlight the relationships and to model the phenomena underlying therapeutic action in cancer. In our work, we applied network-based modeling within a novel bioinformatics pipeline to identify promising multi-target drugs. Given a certain tumor type/subtype, we derive a disease-specific Protein-Protein Interaction (PPI) network by combining different data-bases and knowledge repositories. Next, the application of suitable graph-based algorithms allows selecting a set of potentially interesting combinations of drug targets. A list of drug candidates is then extracted by applying a recent data fusion approach based on matrix tri-factorization. Available knowledge about selected drugs mechanisms of action is finally exploited to identify the most promising candidates for planning in vitro studies. We applied this approach to the case of Triple Negative Breast Cancer (TNBC), a subtype of breast cancer whose biology is poorly understood and that lacks of specific molecular targets. Our "in-silico" findings have been confirmed by a number of in vitro experiments, whose results demonstrated the ability of the method to select candidates for drug repurposing.</description><subject>Algorithms</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Computer and Information Sciences</subject><subject>Computer programs</subject><subject>Data integration</subject><subject>Data processing</subject><subject>Design factors</subject><subject>Disease</subject><subject>Drug development</subject><subject>Drug therapy</subject><subject>Drugs</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Integration</subject><subject>Medicine and Health Sciences</subject><subject>Models, Theoretical</subject><subject>Monte Carlo Method</subject><subject>Multisensor fusion</subject><subject>Physical sciences</subject><subject>Protein interaction</subject><subject>Protein-protein interactions</subject><subject>Proteins</subject><subject>Repositories</subject><subject>Research and analysis methods</subject><subject>Studies</subject><subject>System theory</subject><subject>Systems Integration</subject><subject>Target recognition</subject><subject>Triple Negative Breast Neoplasms - drug therapy</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYqPwDxBYQkJwkWI7zodvJnUdH5UGk7bCrXXmnKYeaRxsZ8Al_xyXdlOLdjHlIpbzvO85OR9J8pzRMctK9u7KDq6DdtzbDseUFVzQ8kFyyGTG04LT7OHO-SB54v0VpXlWFcXj5ICXRcZZUR0mfybkC4af1n1Pj8FjTU4gAJl1ARsHwdiOTPreWdBLEiy5GPreukBO3NCQc-wH11tvuoZAV5PPQxtMOgfXYCDzJTroDXpiOjJ3pm8xBmqi5TWSY4fgA5lCp9E9TR4toPX4bPseJV8_vJ9PP6WnZx9n08lpqkueh1SjyAXLJNCSacFzyakURaFZUUMlZclEjZJWAnlZXwJCnlOqq1JKHvXZos5GycuNb99ar7bV84pVTErGKsEjMdsQtYUr1TuzAvdbWTDq34V1jQIXjG5RVUzwIsaqqIgnFJXkgssMcyGzoop5jpKjbbThcoW1xi44aPdM9790Zqkae61yynNarpN5szVw9seAPqiV8RrbFjq0wzpvXsaoPHb3HijNZZyDIqKv_kPvLsSWaiD-q-kWNqao16ZqIspYd8Z4FanxHVR8alwZHadyYeL9nuDtniAyAX-FBgbv1ezi_P7s2bd99vUOu0Row9LbdliPr98HxQbUznrvcHHbD0bVeqluqqHWS6W2SxVlL3Z7eSu62aLsL-SrGVU</recordid><startdate>20160915</startdate><enddate>20160915</enddate><creator>Vitali, Francesca</creator><creator>Cohen, Laurie D</creator><creator>Demartini, Andrea</creator><creator>Amato, Angela</creator><creator>Eterno, Vincenzo</creator><creator>Zambelli, Alberto</creator><creator>Bellazzi, Riccardo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2916-6402</orcidid></search><sort><creationdate>20160915</creationdate><title>A Network-Based Data Integration Approach to Support Drug Repurposing and Multi-Target Therapies in Triple Negative Breast Cancer</title><author>Vitali, Francesca ; Cohen, Laurie D ; Demartini, Andrea ; Amato, Angela ; Eterno, Vincenzo ; Zambelli, Alberto ; Bellazzi, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-ce454139a071c4259209466c16da899714de9084e27dbaea5500c87992c723fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Computer and Information Sciences</topic><topic>Computer programs</topic><topic>Data integration</topic><topic>Data processing</topic><topic>Design factors</topic><topic>Disease</topic><topic>Drug development</topic><topic>Drug therapy</topic><topic>Drugs</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Integration</topic><topic>Medicine and Health Sciences</topic><topic>Models, Theoretical</topic><topic>Monte Carlo Method</topic><topic>Multisensor fusion</topic><topic>Physical sciences</topic><topic>Protein interaction</topic><topic>Protein-protein interactions</topic><topic>Proteins</topic><topic>Repositories</topic><topic>Research and analysis methods</topic><topic>Studies</topic><topic>System theory</topic><topic>Systems Integration</topic><topic>Target recognition</topic><topic>Triple Negative Breast Neoplasms - drug therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vitali, Francesca</creatorcontrib><creatorcontrib>Cohen, Laurie D</creatorcontrib><creatorcontrib>Demartini, Andrea</creatorcontrib><creatorcontrib>Amato, Angela</creatorcontrib><creatorcontrib>Eterno, Vincenzo</creatorcontrib><creatorcontrib>Zambelli, Alberto</creatorcontrib><creatorcontrib>Bellazzi, Riccardo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vitali, Francesca</au><au>Cohen, Laurie D</au><au>Demartini, Andrea</au><au>Amato, Angela</au><au>Eterno, Vincenzo</au><au>Zambelli, Alberto</au><au>Bellazzi, Riccardo</au><au>Ruan, Jianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Network-Based Data Integration Approach to Support Drug Repurposing and Multi-Target Therapies in Triple Negative Breast Cancer</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-09-15</date><risdate>2016</risdate><volume>11</volume><issue>9</issue><spage>e0162407</spage><epage>e0162407</epage><pages>e0162407-e0162407</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The integration of data and knowledge from heterogeneous sources can be a key success factor in drug design, drug repurposing and multi-target therapies. In this context, biological networks provide a useful instrument to highlight the relationships and to model the phenomena underlying therapeutic action in cancer. In our work, we applied network-based modeling within a novel bioinformatics pipeline to identify promising multi-target drugs. Given a certain tumor type/subtype, we derive a disease-specific Protein-Protein Interaction (PPI) network by combining different data-bases and knowledge repositories. Next, the application of suitable graph-based algorithms allows selecting a set of potentially interesting combinations of drug targets. A list of drug candidates is then extracted by applying a recent data fusion approach based on matrix tri-factorization. Available knowledge about selected drugs mechanisms of action is finally exploited to identify the most promising candidates for planning in vitro studies. We applied this approach to the case of Triple Negative Breast Cancer (TNBC), a subtype of breast cancer whose biology is poorly understood and that lacks of specific molecular targets. Our "in-silico" findings have been confirmed by a number of in vitro experiments, whose results demonstrated the ability of the method to select candidates for drug repurposing.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27632168</pmid><doi>10.1371/journal.pone.0162407</doi><tpages>e0162407</tpages><orcidid>https://orcid.org/0000-0003-2916-6402</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-09, Vol.11 (9), p.e0162407-e0162407 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1819911842 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Algorithms Antineoplastic Agents - therapeutic use Bioinformatics Biology Biology and Life Sciences Breast cancer Cancer Cancer therapies Computer and Information Sciences Computer programs Data integration Data processing Design factors Disease Drug development Drug therapy Drugs Female Gene expression Genomes Health aspects Humans Integration Medicine and Health Sciences Models, Theoretical Monte Carlo Method Multisensor fusion Physical sciences Protein interaction Protein-protein interactions Proteins Repositories Research and analysis methods Studies System theory Systems Integration Target recognition Triple Negative Breast Neoplasms - drug therapy |
title | A Network-Based Data Integration Approach to Support Drug Repurposing and Multi-Target Therapies in Triple Negative Breast Cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Network-Based%20Data%20Integration%20Approach%20to%20Support%20Drug%20Repurposing%20and%20Multi-Target%20Therapies%20in%20Triple%20Negative%20Breast%20Cancer&rft.jtitle=PloS%20one&rft.au=Vitali,%20Francesca&rft.date=2016-09-15&rft.volume=11&rft.issue=9&rft.spage=e0162407&rft.epage=e0162407&rft.pages=e0162407-e0162407&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0162407&rft_dat=%3Cgale_plos_%3EA470941128%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1819911842&rft_id=info:pmid/27632168&rft_galeid=A470941128&rft_doaj_id=oai_doaj_org_article_814264e2804142e48924293e54936841&rfr_iscdi=true |