Reasoning in Reference Games: Individual- vs. Population-Level Probabilistic Modeling

Recent advances in probabilistic pragmatics have achieved considerable success in modeling speakers' and listeners' pragmatic reasoning as probabilistic inference. However, these models are usually applied to population-level data, and so implicitly suggest a homogeneous population without...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-05, Vol.11 (5), p.e0154854-e0154854
Hauptverfasser: Franke, Michael, Degen, Judith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0154854
container_issue 5
container_start_page e0154854
container_title PloS one
container_volume 11
creator Franke, Michael
Degen, Judith
description Recent advances in probabilistic pragmatics have achieved considerable success in modeling speakers' and listeners' pragmatic reasoning as probabilistic inference. However, these models are usually applied to population-level data, and so implicitly suggest a homogeneous population without individual differences. Here we investigate potential individual differences in Theory-of-Mind related depth of pragmatic reasoning in so-called reference games that require drawing ad hoc Quantity implicatures of varying complexity. We show by Bayesian model comparison that a model that assumes a heterogenous population is a better predictor of our data, especially for comprehension. We discuss the implications for the treatment of individual differences in probabilistic models of language use.
doi_str_mv 10.1371/journal.pone.0154854
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1818673655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A453418496</galeid><doaj_id>oai_doaj_org_article_70e8eaced09b416d9a3ef3c35fe5a54c</doaj_id><sourcerecordid>A453418496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-28d844f0e3c30226bc0e5e41a59906b74a08c90708c27923d611b5c12f664cda3</originalsourceid><addsrcrecordid>eNqNkl2LEzEUhgdR3HX1H4gOCKIXU5PJ53ghLIuuhcou1fU2ZDJn2pQ06U5miv57Uzu7tLIXEkhC8pw3J-e8WfYSowkmAn9YhaHz2k02wcMEYUYlo4-yU1yRsuAlIo8P9ifZsxhXCDEiOX-anZQC04oLdprdzEHH4K1f5Nbnc2ihA28gv9RriB_zqW_s1jaDdkW-jZP8OmwGp3sbfDGDLbj8ugu1rq2zsbcm_xYacEnrefak1S7Ci3E9y26-fP5x8bWYXV1OL85nheFV2RelbCSlLQJiCCpLXhsEDCjWrKoQrwXVSJoKiTSXoipJwzGumcFlyzk1jSZn2eu97saFqMaKRIUlllwQzlgipnuiCXqlNp1d6-63CtqqvwehWyjdpdQdKIFAgjbQoKqmmDeVJtCmzFgLTDNqktan8bWhXkNjwPeddkeixzfeLtUibFVqjSxZlQTejQJduB0g9mptowHntIcwpLyFFFRIQkRC3_yDPvy7kVro9AHr25DeNTtRdU4ZoVimNidq8gCVRgNra5J9WpvOjwLeHwUkpodf_UIPMarp9_n_s1c_j9m3B-wStOuXMbhh56d4DNI9aLoQYwftfZExUjv331VD7dyvRvensFeHDboPurM7-QNxMf5_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1818673655</pqid></control><display><type>article</type><title>Reasoning in Reference Games: Individual- vs. Population-Level Probabilistic Modeling</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Franke, Michael ; Degen, Judith</creator><contributor>Allen, Philip</contributor><creatorcontrib>Franke, Michael ; Degen, Judith ; Allen, Philip</creatorcontrib><description>Recent advances in probabilistic pragmatics have achieved considerable success in modeling speakers' and listeners' pragmatic reasoning as probabilistic inference. However, these models are usually applied to population-level data, and so implicitly suggest a homogeneous population without individual differences. Here we investigate potential individual differences in Theory-of-Mind related depth of pragmatic reasoning in so-called reference games that require drawing ad hoc Quantity implicatures of varying complexity. We show by Bayesian model comparison that a model that assumes a heterogenous population is a better predictor of our data, especially for comprehension. We discuss the implications for the treatment of individual differences in probabilistic models of language use.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0154854</identifier><identifier>PMID: 27149675</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Bayes Theorem ; Bayesian analysis ; Biology and Life Sciences ; Cognition &amp; reasoning ; Comprehension ; Decision Making ; Engineering and Technology ; Experimental psychology ; Fingers &amp; toes ; Games ; Games, Experimental ; Humans ; Language ; Mathematical models ; Medicine and Health Sciences ; Memory ; Modelling ; Models, Statistical ; Population ; Probabilistic inference ; Probabilistic models ; Quantitative psychology ; Reasoning ; Social Sciences ; Theory</subject><ispartof>PloS one, 2016-05, Vol.11 (5), p.e0154854-e0154854</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Franke, Degen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Franke, Degen 2016 Franke, Degen</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-28d844f0e3c30226bc0e5e41a59906b74a08c90708c27923d611b5c12f664cda3</citedby><cites>FETCH-LOGICAL-c692t-28d844f0e3c30226bc0e5e41a59906b74a08c90708c27923d611b5c12f664cda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4858259/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4858259/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27149675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Allen, Philip</contributor><creatorcontrib>Franke, Michael</creatorcontrib><creatorcontrib>Degen, Judith</creatorcontrib><title>Reasoning in Reference Games: Individual- vs. Population-Level Probabilistic Modeling</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Recent advances in probabilistic pragmatics have achieved considerable success in modeling speakers' and listeners' pragmatic reasoning as probabilistic inference. However, these models are usually applied to population-level data, and so implicitly suggest a homogeneous population without individual differences. Here we investigate potential individual differences in Theory-of-Mind related depth of pragmatic reasoning in so-called reference games that require drawing ad hoc Quantity implicatures of varying complexity. We show by Bayesian model comparison that a model that assumes a heterogenous population is a better predictor of our data, especially for comprehension. We discuss the implications for the treatment of individual differences in probabilistic models of language use.</description><subject>Analysis</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Cognition &amp; reasoning</subject><subject>Comprehension</subject><subject>Decision Making</subject><subject>Engineering and Technology</subject><subject>Experimental psychology</subject><subject>Fingers &amp; toes</subject><subject>Games</subject><subject>Games, Experimental</subject><subject>Humans</subject><subject>Language</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Memory</subject><subject>Modelling</subject><subject>Models, Statistical</subject><subject>Population</subject><subject>Probabilistic inference</subject><subject>Probabilistic models</subject><subject>Quantitative psychology</subject><subject>Reasoning</subject><subject>Social Sciences</subject><subject>Theory</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2LEzEUhgdR3HX1H4gOCKIXU5PJ53ghLIuuhcou1fU2ZDJn2pQ06U5miv57Uzu7tLIXEkhC8pw3J-e8WfYSowkmAn9YhaHz2k02wcMEYUYlo4-yU1yRsuAlIo8P9ifZsxhXCDEiOX-anZQC04oLdprdzEHH4K1f5Nbnc2ihA28gv9RriB_zqW_s1jaDdkW-jZP8OmwGp3sbfDGDLbj8ugu1rq2zsbcm_xYacEnrefak1S7Ci3E9y26-fP5x8bWYXV1OL85nheFV2RelbCSlLQJiCCpLXhsEDCjWrKoQrwXVSJoKiTSXoipJwzGumcFlyzk1jSZn2eu97saFqMaKRIUlllwQzlgipnuiCXqlNp1d6-63CtqqvwehWyjdpdQdKIFAgjbQoKqmmDeVJtCmzFgLTDNqktan8bWhXkNjwPeddkeixzfeLtUibFVqjSxZlQTejQJduB0g9mptowHntIcwpLyFFFRIQkRC3_yDPvy7kVro9AHr25DeNTtRdU4ZoVimNidq8gCVRgNra5J9WpvOjwLeHwUkpodf_UIPMarp9_n_s1c_j9m3B-wStOuXMbhh56d4DNI9aLoQYwftfZExUjv331VD7dyvRvensFeHDboPurM7-QNxMf5_</recordid><startdate>20160505</startdate><enddate>20160505</enddate><creator>Franke, Michael</creator><creator>Degen, Judith</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160505</creationdate><title>Reasoning in Reference Games: Individual- vs. Population-Level Probabilistic Modeling</title><author>Franke, Michael ; Degen, Judith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-28d844f0e3c30226bc0e5e41a59906b74a08c90708c27923d611b5c12f664cda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Cognition &amp; reasoning</topic><topic>Comprehension</topic><topic>Decision Making</topic><topic>Engineering and Technology</topic><topic>Experimental psychology</topic><topic>Fingers &amp; toes</topic><topic>Games</topic><topic>Games, Experimental</topic><topic>Humans</topic><topic>Language</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Memory</topic><topic>Modelling</topic><topic>Models, Statistical</topic><topic>Population</topic><topic>Probabilistic inference</topic><topic>Probabilistic models</topic><topic>Quantitative psychology</topic><topic>Reasoning</topic><topic>Social Sciences</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franke, Michael</creatorcontrib><creatorcontrib>Degen, Judith</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franke, Michael</au><au>Degen, Judith</au><au>Allen, Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reasoning in Reference Games: Individual- vs. Population-Level Probabilistic Modeling</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-05-05</date><risdate>2016</risdate><volume>11</volume><issue>5</issue><spage>e0154854</spage><epage>e0154854</epage><pages>e0154854-e0154854</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Recent advances in probabilistic pragmatics have achieved considerable success in modeling speakers' and listeners' pragmatic reasoning as probabilistic inference. However, these models are usually applied to population-level data, and so implicitly suggest a homogeneous population without individual differences. Here we investigate potential individual differences in Theory-of-Mind related depth of pragmatic reasoning in so-called reference games that require drawing ad hoc Quantity implicatures of varying complexity. We show by Bayesian model comparison that a model that assumes a heterogenous population is a better predictor of our data, especially for comprehension. We discuss the implications for the treatment of individual differences in probabilistic models of language use.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27149675</pmid><doi>10.1371/journal.pone.0154854</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-05, Vol.11 (5), p.e0154854-e0154854
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1818673655
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Bayes Theorem
Bayesian analysis
Biology and Life Sciences
Cognition & reasoning
Comprehension
Decision Making
Engineering and Technology
Experimental psychology
Fingers & toes
Games
Games, Experimental
Humans
Language
Mathematical models
Medicine and Health Sciences
Memory
Modelling
Models, Statistical
Population
Probabilistic inference
Probabilistic models
Quantitative psychology
Reasoning
Social Sciences
Theory
title Reasoning in Reference Games: Individual- vs. Population-Level Probabilistic Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A05%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reasoning%20in%20Reference%20Games:%20Individual-%20vs.%20Population-Level%20Probabilistic%20Modeling&rft.jtitle=PloS%20one&rft.au=Franke,%20Michael&rft.date=2016-05-05&rft.volume=11&rft.issue=5&rft.spage=e0154854&rft.epage=e0154854&rft.pages=e0154854-e0154854&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0154854&rft_dat=%3Cgale_plos_%3EA453418496%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1818673655&rft_id=info:pmid/27149675&rft_galeid=A453418496&rft_doaj_id=oai_doaj_org_article_70e8eaced09b416d9a3ef3c35fe5a54c&rfr_iscdi=true