Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus

The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC), plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-09, Vol.11 (9), p.e0162839-e0162839
Hauptverfasser: Jeong, Jae Hoon, Woo, Young Jae, Chua, Jr, Streamson, Jo, Young-Hwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0162839
container_issue 9
container_start_page e0162839
container_title PloS one
container_volume 11
creator Jeong, Jae Hoon
Woo, Young Jae
Chua, Jr, Streamson
Jo, Young-Hwan
description The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC), plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT)-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th) mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat.
doi_str_mv 10.1371/journal.pone.0162839
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1818049162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470941533</galeid><doaj_id>oai_doaj_org_article_66fee1ac764f42fab2d3b15b380878a8</doaj_id><sourcerecordid>A470941533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-bde443c0639651924efb1ac4956aac5f746f3a5b6523dae1c01a760588dbbd553</originalsourceid><addsrcrecordid>eNqNk99r2zAQx83YWLtu_8HYDIOxPSTTD0u2XwYhdG2gtLBuexWyfHJUFCuV7NH895Mbt8SjD0UPEqfPfe90p0uS9xjNMc3xtxvX-1ba-da1MEeYk4KWL5JjXFIy4wTRlwfno-RNCDcIMVpw_jo5IjnHmBfsONHXpm0szJZgbXoGLaSnd1sPIRjXpouovwsmpE6ny7WzpgXfGJVeQu9dG1LTpt0a0oVXvewgveyVhf6eHsznu63r1tLKTR_eJq-0tAHejftJ8vvH6a_l-ezi6my1XFzMVE5YN6tqyDKqEKclZ7gkGegKS5WVjEupmM4zrqlkFWeE1hKwQljmHLGiqKuqZoyeJB_3ulvrghhLFAQucIGyMhYpEqs9UTt5I7bebKTfCSeNuDc43wjpOxNfIjjXADF8zjOdES0rUtMKs4oWqMgLWUSt72O0vtpAraDtvLQT0elNa9aicX8FQzjPCY8CX0YB7257CJ3YmKBiK2QLrh_yJnkRYyH2DBSXmFDEh7Q-_Yc-XYiRamR8q2m1iymqQVQsshyVGWaURmr-BBVXDRuj4tfTJtonDl8nDpHp4K5rZB-CWF3_fD579WfKfj5g1yBttw7O9l38qGEKZntQeReCB_3YD4zEMDkP1RDD5IhxcqLbh8NePjo9jAr9B7h7Er8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1818049162</pqid></control><display><type>article</type><title>Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jeong, Jae Hoon ; Woo, Young Jae ; Chua, Jr, Streamson ; Jo, Young-Hwan</creator><contributor>Ginsberg, Stephen D</contributor><creatorcontrib>Jeong, Jae Hoon ; Woo, Young Jae ; Chua, Jr, Streamson ; Jo, Young-Hwan ; Ginsberg, Stephen D</creatorcontrib><description>The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC), plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT)-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th) mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0162839</identifier><identifier>PMID: 27611685</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetyltransferase ; Amines ; Animals ; Arcuate nucleus ; Arcuate Nucleus of Hypothalamus - cytology ; Arcuate Nucleus of Hypothalamus - metabolism ; Biology and Life Sciences ; Brain ; Choline ; Choline O-acetyltransferase ; Cholinergic nerves ; Cholinergic Neurons - metabolism ; Cluster Analysis ; Endocrinology ; Energy ; Enzymes ; Food intake ; GABA ; Gene expression ; Gene Expression Profiling - methods ; Genes ; Genetic research ; Glucose ; Glutamate ; Glutamate decarboxylase ; Glutamic acid transporter ; Heterogeneity ; Homeostasis ; Hydroxylase ; Hypothalamus ; Insulin ; Intracellular signalling ; Medicine ; Medicine and Health Sciences ; Mice, Inbred C57BL ; Neural circuitry ; Neural networks ; Neurons ; Neuropeptides ; Neurotransmitters ; Nuclei (cytology) ; Potassium ; Pro-Opiomelanocortin - metabolism ; Proopiomelanocortin ; Receptors, Leptin - metabolism ; RNA ; Rodents ; Signal transduction ; Single-Cell Analysis - methods ; Studies ; Transcription ; Tyrosine ; Tyrosine 3-monooxygenase ; Tyrosine 3-Monooxygenase - metabolism</subject><ispartof>PloS one, 2016-09, Vol.11 (9), p.e0162839-e0162839</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Jeong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Jeong et al 2016 Jeong et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-bde443c0639651924efb1ac4956aac5f746f3a5b6523dae1c01a760588dbbd553</citedby><cites>FETCH-LOGICAL-c725t-bde443c0639651924efb1ac4956aac5f746f3a5b6523dae1c01a760588dbbd553</cites><orcidid>0000-0001-9053-138X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017726/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017726/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27611685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ginsberg, Stephen D</contributor><creatorcontrib>Jeong, Jae Hoon</creatorcontrib><creatorcontrib>Woo, Young Jae</creatorcontrib><creatorcontrib>Chua, Jr, Streamson</creatorcontrib><creatorcontrib>Jo, Young-Hwan</creatorcontrib><title>Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC), plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT)-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th) mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat.</description><subject>Acetyltransferase</subject><subject>Amines</subject><subject>Animals</subject><subject>Arcuate nucleus</subject><subject>Arcuate Nucleus of Hypothalamus - cytology</subject><subject>Arcuate Nucleus of Hypothalamus - metabolism</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Choline</subject><subject>Choline O-acetyltransferase</subject><subject>Cholinergic nerves</subject><subject>Cholinergic Neurons - metabolism</subject><subject>Cluster Analysis</subject><subject>Endocrinology</subject><subject>Energy</subject><subject>Enzymes</subject><subject>Food intake</subject><subject>GABA</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Genes</subject><subject>Genetic research</subject><subject>Glucose</subject><subject>Glutamate</subject><subject>Glutamate decarboxylase</subject><subject>Glutamic acid transporter</subject><subject>Heterogeneity</subject><subject>Homeostasis</subject><subject>Hydroxylase</subject><subject>Hypothalamus</subject><subject>Insulin</subject><subject>Intracellular signalling</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Mice, Inbred C57BL</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neuropeptides</subject><subject>Neurotransmitters</subject><subject>Nuclei (cytology)</subject><subject>Potassium</subject><subject>Pro-Opiomelanocortin - metabolism</subject><subject>Proopiomelanocortin</subject><subject>Receptors, Leptin - metabolism</subject><subject>RNA</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Single-Cell Analysis - methods</subject><subject>Studies</subject><subject>Transcription</subject><subject>Tyrosine</subject><subject>Tyrosine 3-monooxygenase</subject><subject>Tyrosine 3-Monooxygenase - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99r2zAQx83YWLtu_8HYDIOxPSTTD0u2XwYhdG2gtLBuexWyfHJUFCuV7NH895Mbt8SjD0UPEqfPfe90p0uS9xjNMc3xtxvX-1ba-da1MEeYk4KWL5JjXFIy4wTRlwfno-RNCDcIMVpw_jo5IjnHmBfsONHXpm0szJZgbXoGLaSnd1sPIRjXpouovwsmpE6ny7WzpgXfGJVeQu9dG1LTpt0a0oVXvewgveyVhf6eHsznu63r1tLKTR_eJq-0tAHejftJ8vvH6a_l-ezi6my1XFzMVE5YN6tqyDKqEKclZ7gkGegKS5WVjEupmM4zrqlkFWeE1hKwQljmHLGiqKuqZoyeJB_3ulvrghhLFAQucIGyMhYpEqs9UTt5I7bebKTfCSeNuDc43wjpOxNfIjjXADF8zjOdES0rUtMKs4oWqMgLWUSt72O0vtpAraDtvLQT0elNa9aicX8FQzjPCY8CX0YB7257CJ3YmKBiK2QLrh_yJnkRYyH2DBSXmFDEh7Q-_Yc-XYiRamR8q2m1iymqQVQsshyVGWaURmr-BBVXDRuj4tfTJtonDl8nDpHp4K5rZB-CWF3_fD579WfKfj5g1yBttw7O9l38qGEKZntQeReCB_3YD4zEMDkP1RDD5IhxcqLbh8NePjo9jAr9B7h7Er8</recordid><startdate>20160909</startdate><enddate>20160909</enddate><creator>Jeong, Jae Hoon</creator><creator>Woo, Young Jae</creator><creator>Chua, Jr, Streamson</creator><creator>Jo, Young-Hwan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9053-138X</orcidid></search><sort><creationdate>20160909</creationdate><title>Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus</title><author>Jeong, Jae Hoon ; Woo, Young Jae ; Chua, Jr, Streamson ; Jo, Young-Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-bde443c0639651924efb1ac4956aac5f746f3a5b6523dae1c01a760588dbbd553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acetyltransferase</topic><topic>Amines</topic><topic>Animals</topic><topic>Arcuate nucleus</topic><topic>Arcuate Nucleus of Hypothalamus - cytology</topic><topic>Arcuate Nucleus of Hypothalamus - metabolism</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Choline</topic><topic>Choline O-acetyltransferase</topic><topic>Cholinergic nerves</topic><topic>Cholinergic Neurons - metabolism</topic><topic>Cluster Analysis</topic><topic>Endocrinology</topic><topic>Energy</topic><topic>Enzymes</topic><topic>Food intake</topic><topic>GABA</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Genes</topic><topic>Genetic research</topic><topic>Glucose</topic><topic>Glutamate</topic><topic>Glutamate decarboxylase</topic><topic>Glutamic acid transporter</topic><topic>Heterogeneity</topic><topic>Homeostasis</topic><topic>Hydroxylase</topic><topic>Hypothalamus</topic><topic>Insulin</topic><topic>Intracellular signalling</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Mice, Inbred C57BL</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neuropeptides</topic><topic>Neurotransmitters</topic><topic>Nuclei (cytology)</topic><topic>Potassium</topic><topic>Pro-Opiomelanocortin - metabolism</topic><topic>Proopiomelanocortin</topic><topic>Receptors, Leptin - metabolism</topic><topic>RNA</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Single-Cell Analysis - methods</topic><topic>Studies</topic><topic>Transcription</topic><topic>Tyrosine</topic><topic>Tyrosine 3-monooxygenase</topic><topic>Tyrosine 3-Monooxygenase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Jae Hoon</creatorcontrib><creatorcontrib>Woo, Young Jae</creatorcontrib><creatorcontrib>Chua, Jr, Streamson</creatorcontrib><creatorcontrib>Jo, Young-Hwan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Jae Hoon</au><au>Woo, Young Jae</au><au>Chua, Jr, Streamson</au><au>Jo, Young-Hwan</au><au>Ginsberg, Stephen D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-09-09</date><risdate>2016</risdate><volume>11</volume><issue>9</issue><spage>e0162839</spage><epage>e0162839</epage><pages>e0162839-e0162839</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC), plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT)-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th) mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27611685</pmid><doi>10.1371/journal.pone.0162839</doi><tpages>e0162839</tpages><orcidid>https://orcid.org/0000-0001-9053-138X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-09, Vol.11 (9), p.e0162839-e0162839
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1818049162
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acetyltransferase
Amines
Animals
Arcuate nucleus
Arcuate Nucleus of Hypothalamus - cytology
Arcuate Nucleus of Hypothalamus - metabolism
Biology and Life Sciences
Brain
Choline
Choline O-acetyltransferase
Cholinergic nerves
Cholinergic Neurons - metabolism
Cluster Analysis
Endocrinology
Energy
Enzymes
Food intake
GABA
Gene expression
Gene Expression Profiling - methods
Genes
Genetic research
Glucose
Glutamate
Glutamate decarboxylase
Glutamic acid transporter
Heterogeneity
Homeostasis
Hydroxylase
Hypothalamus
Insulin
Intracellular signalling
Medicine
Medicine and Health Sciences
Mice, Inbred C57BL
Neural circuitry
Neural networks
Neurons
Neuropeptides
Neurotransmitters
Nuclei (cytology)
Potassium
Pro-Opiomelanocortin - metabolism
Proopiomelanocortin
Receptors, Leptin - metabolism
RNA
Rodents
Signal transduction
Single-Cell Analysis - methods
Studies
Transcription
Tyrosine
Tyrosine 3-monooxygenase
Tyrosine 3-Monooxygenase - metabolism
title Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A46%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Cell%20Gene%20Expression%20Analysis%20of%20Cholinergic%20Neurons%20in%20the%20Arcuate%20Nucleus%20of%20the%20Hypothalamus&rft.jtitle=PloS%20one&rft.au=Jeong,%20Jae%20Hoon&rft.date=2016-09-09&rft.volume=11&rft.issue=9&rft.spage=e0162839&rft.epage=e0162839&rft.pages=e0162839-e0162839&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0162839&rft_dat=%3Cgale_plos_%3EA470941533%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1818049162&rft_id=info:pmid/27611685&rft_galeid=A470941533&rft_doaj_id=oai_doaj_org_article_66fee1ac764f42fab2d3b15b380878a8&rfr_iscdi=true