Experimental Design for Stochastic Models of Nonlinear Signaling Pathways Using an Interval-Wise Linear Noise Approximation and State Estimation

Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the informat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-09, Vol.11 (9), p.e0159902-e0159902
1. Verfasser: Zimmer, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0159902
container_issue 9
container_start_page e0159902
container_title PloS one
container_volume 11
creator Zimmer, Christoph
description Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models.
doi_str_mv 10.1371/journal.pone.0159902
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1816053326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A462200785</galeid><doaj_id>oai_doaj_org_article_e40e77e0c0ec4d9ba6a381d237262b8b</doaj_id><sourcerecordid>A462200785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-1643c915f8d07063facbb9ac066076f3540812223554458d99e5a3a4e21ba3a53</originalsourceid><addsrcrecordid>eNqNkt9u0zAUxiMEYmPwBggiISFuWvw_zs2kahSoVAYSTFxaJ47TpnLtYKdjewseGYdmU4u44Mr28e985_jzybLnGE0xLfDbjd8FB3baeWemCPOyRORBdopLSiaCIPrwYH-SPYlxgxCnUojH2QkpuKQSkdPs1_ymM6HdGteDzd-Z2K5c3viQf-29XkPsW51_8rWxMfdNfumdbZ2BdJ04SPtV_gX69U-4jflVHI7g8oXrTbgGO_neRpMv9wmXfjjMui74m3YLfetdYutUB3qTz1OhffBp9qgBG82zcT3Lrt7Pv118nCw_f1hczJYTLbDsJ1gwqkvMG1mjAgnagK6qEjQSAhWioZwhiQkhlHPGuKzL0nCgwAzBVVo5Pcte7nU766MazYwKSyySTZSIRCz2RO1ho7pkEoRb5aFVfwI-rBSE5I81yjBkisIgjYxmdVmBACpxTWhBBKlklbTOx2q7amtqnewOYI9Ej29cu1Yrf604QlIymgTejALB_9iZ2KttG7WxFpzxu6FvUsiSME7-A8VCUCTKMqGv_kL_bcRIrSC9tXWNTy3qQVTNmCAEoUIOhr4-oNYGbL-O3u6GT43HINuDOvgYg2nubcBIDaN914QaRluNo53SXhxaeJ90N8v0N-M99ko</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816053326</pqid></control><display><type>article</type><title>Experimental Design for Stochastic Models of Nonlinear Signaling Pathways Using an Interval-Wise Linear Noise Approximation and State Estimation</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zimmer, Christoph</creator><creatorcontrib>Zimmer, Christoph</creatorcontrib><description>Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0159902</identifier><identifier>PMID: 27583802</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Background noise ; Bioinformatics ; Biological effects ; Biology ; Biology and Life Sciences ; Calcium ; Calcium Signaling ; Cellular signal transduction ; Coding ; Computation ; Computer and Information Sciences ; Computer applications ; Computer simulation ; Data processing ; Design ; Differential equations ; Experimental design ; Gene expression ; Immigration ; Mathematical models ; Methods ; Models, Theoretical ; Nonlinear systems ; Nonlinearity ; Normal distribution ; Objective function ; Observability (systems) ; Ordinary differential equations ; Parameter estimation ; Physical Sciences ; Physics ; Physiological aspects ; Research and Analysis Methods ; Signal transduction ; Signal-To-Noise Ratio ; Signaling ; Simulation ; Software development tools ; State estimation ; Stochastic models ; Stochastic Processes ; Stochastic systems ; Stochasticity ; Studies ; Systems Biology</subject><ispartof>PloS one, 2016-09, Vol.11 (9), p.e0159902-e0159902</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Christoph Zimmer. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Christoph Zimmer 2016 Christoph Zimmer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-1643c915f8d07063facbb9ac066076f3540812223554458d99e5a3a4e21ba3a53</citedby><cites>FETCH-LOGICAL-c618t-1643c915f8d07063facbb9ac066076f3540812223554458d99e5a3a4e21ba3a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008843/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008843/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27583802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zimmer, Christoph</creatorcontrib><title>Experimental Design for Stochastic Models of Nonlinear Signaling Pathways Using an Interval-Wise Linear Noise Approximation and State Estimation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models.</description><subject>Accuracy</subject><subject>Background noise</subject><subject>Bioinformatics</subject><subject>Biological effects</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Calcium</subject><subject>Calcium Signaling</subject><subject>Cellular signal transduction</subject><subject>Coding</subject><subject>Computation</subject><subject>Computer and Information Sciences</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Design</subject><subject>Differential equations</subject><subject>Experimental design</subject><subject>Gene expression</subject><subject>Immigration</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Normal distribution</subject><subject>Objective function</subject><subject>Observability (systems)</subject><subject>Ordinary differential equations</subject><subject>Parameter estimation</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physiological aspects</subject><subject>Research and Analysis Methods</subject><subject>Signal transduction</subject><subject>Signal-To-Noise Ratio</subject><subject>Signaling</subject><subject>Simulation</subject><subject>Software development tools</subject><subject>State estimation</subject><subject>Stochastic models</subject><subject>Stochastic Processes</subject><subject>Stochastic systems</subject><subject>Stochasticity</subject><subject>Studies</subject><subject>Systems Biology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkt9u0zAUxiMEYmPwBggiISFuWvw_zs2kahSoVAYSTFxaJ47TpnLtYKdjewseGYdmU4u44Mr28e985_jzybLnGE0xLfDbjd8FB3baeWemCPOyRORBdopLSiaCIPrwYH-SPYlxgxCnUojH2QkpuKQSkdPs1_ymM6HdGteDzd-Z2K5c3viQf-29XkPsW51_8rWxMfdNfumdbZ2BdJ04SPtV_gX69U-4jflVHI7g8oXrTbgGO_neRpMv9wmXfjjMui74m3YLfetdYutUB3qTz1OhffBp9qgBG82zcT3Lrt7Pv118nCw_f1hczJYTLbDsJ1gwqkvMG1mjAgnagK6qEjQSAhWioZwhiQkhlHPGuKzL0nCgwAzBVVo5Pcte7nU766MazYwKSyySTZSIRCz2RO1ho7pkEoRb5aFVfwI-rBSE5I81yjBkisIgjYxmdVmBACpxTWhBBKlklbTOx2q7amtqnewOYI9Ej29cu1Yrf604QlIymgTejALB_9iZ2KttG7WxFpzxu6FvUsiSME7-A8VCUCTKMqGv_kL_bcRIrSC9tXWNTy3qQVTNmCAEoUIOhr4-oNYGbL-O3u6GT43HINuDOvgYg2nubcBIDaN914QaRluNo53SXhxaeJ90N8v0N-M99ko</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Zimmer, Christoph</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160901</creationdate><title>Experimental Design for Stochastic Models of Nonlinear Signaling Pathways Using an Interval-Wise Linear Noise Approximation and State Estimation</title><author>Zimmer, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-1643c915f8d07063facbb9ac066076f3540812223554458d99e5a3a4e21ba3a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Background noise</topic><topic>Bioinformatics</topic><topic>Biological effects</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Calcium</topic><topic>Calcium Signaling</topic><topic>Cellular signal transduction</topic><topic>Coding</topic><topic>Computation</topic><topic>Computer and Information Sciences</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Design</topic><topic>Differential equations</topic><topic>Experimental design</topic><topic>Gene expression</topic><topic>Immigration</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Normal distribution</topic><topic>Objective function</topic><topic>Observability (systems)</topic><topic>Ordinary differential equations</topic><topic>Parameter estimation</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physiological aspects</topic><topic>Research and Analysis Methods</topic><topic>Signal transduction</topic><topic>Signal-To-Noise Ratio</topic><topic>Signaling</topic><topic>Simulation</topic><topic>Software development tools</topic><topic>State estimation</topic><topic>Stochastic models</topic><topic>Stochastic Processes</topic><topic>Stochastic systems</topic><topic>Stochasticity</topic><topic>Studies</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zimmer, Christoph</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zimmer, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Design for Stochastic Models of Nonlinear Signaling Pathways Using an Interval-Wise Linear Noise Approximation and State Estimation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>11</volume><issue>9</issue><spage>e0159902</spage><epage>e0159902</epage><pages>e0159902-e0159902</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27583802</pmid><doi>10.1371/journal.pone.0159902</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-09, Vol.11 (9), p.e0159902-e0159902
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1816053326
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Accuracy
Background noise
Bioinformatics
Biological effects
Biology
Biology and Life Sciences
Calcium
Calcium Signaling
Cellular signal transduction
Coding
Computation
Computer and Information Sciences
Computer applications
Computer simulation
Data processing
Design
Differential equations
Experimental design
Gene expression
Immigration
Mathematical models
Methods
Models, Theoretical
Nonlinear systems
Nonlinearity
Normal distribution
Objective function
Observability (systems)
Ordinary differential equations
Parameter estimation
Physical Sciences
Physics
Physiological aspects
Research and Analysis Methods
Signal transduction
Signal-To-Noise Ratio
Signaling
Simulation
Software development tools
State estimation
Stochastic models
Stochastic Processes
Stochastic systems
Stochasticity
Studies
Systems Biology
title Experimental Design for Stochastic Models of Nonlinear Signaling Pathways Using an Interval-Wise Linear Noise Approximation and State Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A57%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Design%20for%20Stochastic%20Models%20of%20Nonlinear%20Signaling%20Pathways%20Using%20an%20Interval-Wise%20Linear%20Noise%20Approximation%20and%20State%20Estimation&rft.jtitle=PloS%20one&rft.au=Zimmer,%20Christoph&rft.date=2016-09-01&rft.volume=11&rft.issue=9&rft.spage=e0159902&rft.epage=e0159902&rft.pages=e0159902-e0159902&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0159902&rft_dat=%3Cgale_plos_%3EA462200785%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816053326&rft_id=info:pmid/27583802&rft_galeid=A462200785&rft_doaj_id=oai_doaj_org_article_e40e77e0c0ec4d9ba6a381d237262b8b&rfr_iscdi=true