In Vitro Biocompatibility of Si Alloyed Multi-Principal Element Carbide Coatings

In the current study, we have examined the possibility to improve the biocompatibility of the (TiZrNbTaHf)C through replacement of either Ti or Ta by Si. The coatings were deposited on Si and 316L stainless steel substrates by magnetron sputtering in an Ar+CH4 mixed atmosphere and were examined for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-08, Vol.11 (8), p.e0161151-e0161151
Hauptverfasser: Vladescu, Alina, Titorencu, Irina, Dekhtyar, Yuri, Jinga, Victor, Pruna, Vasile, Balaceanu, Mihai, Dinu, Mihaela, Pana, Iulian, Vendina, Viktorija, Braic, Mariana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0161151
container_issue 8
container_start_page e0161151
container_title PloS one
container_volume 11
creator Vladescu, Alina
Titorencu, Irina
Dekhtyar, Yuri
Jinga, Victor
Pruna, Vasile
Balaceanu, Mihai
Dinu, Mihaela
Pana, Iulian
Vendina, Viktorija
Braic, Mariana
description In the current study, we have examined the possibility to improve the biocompatibility of the (TiZrNbTaHf)C through replacement of either Ti or Ta by Si. The coatings were deposited on Si and 316L stainless steel substrates by magnetron sputtering in an Ar+CH4 mixed atmosphere and were examined for elemental composition, chemical bonds, surface topography, surface electrical charge and biocompatible characteristics. The net surface charge was evaluated at nano and macroscopic scale by measuring the electrical potential and work function, respectively. The biocompatible tests comprised determination of cell viability and cell attachment to the coated surface. The deposited coatings had C/(metal+Si) ratios close to unity, while a mixture of metallic carbide, free-carbon and oxidized species formed on the film surface. The coatings' surfaces were smooth and no influence of surface roughness on electrical charge or biocompatibility was found. The biocompatible characteristics correlated well with the electrical potential/work function, suggesting a significant role of surface charge in improving biocompatibility, particularly cell attachment to coating's surface. Replacement of either Ti or Ta by Si in the (TiZrNbTaHf)C coating led to an enhanced surface electrical charge, as well as to superior biocompatible properties, with best results for the (TiZrNbSiHf)C coating.
doi_str_mv 10.1371/journal.pone.0161151
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1814901671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A461910841</galeid><doaj_id>oai_doaj_org_article_225fbed4498b46388a6949716b42afa9</doaj_id><sourcerecordid>A461910841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c791t-a9f2bf386f74a328a8e0dfef06f0eed5e7deb62d495f8ffe8adc255a7f2cf8823</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYqPwDxBEQkJw0eLvODdIpRpQaWgTg91aTmK3rpy4sx1E_z3umk0N2sXkC1v2874-59gny15DMIO4gJ82rvedtLOt69QMQAYhhU-yU1hiNGUI4KdH65PsRQgbACjmjD3PTlBBC4gZPM0ul11-baJ3-RfjatduZTSVsSbucqfzK5PPrXU71eQ_ehvN9NKbrjZbafMzq1rVxXwhfWUalS9cUnar8DJ7pqUN6tUwT7LfX89-Lb5Pzy--LRfz82ldlDBOZalRpVM4uiASIy65Ao1WGjANlGqoKhpVMdSQkmquteKyqRGlstCo1pwjPMneHny31gUxFCMIyCEpUzVSepNseSAaJzdi600r_U44acTthvMrIX00tVUCIaor1RBS8oowzLlkJSkLyCqCpJZl8vo83NZXrWrqlLmXdmQ6PunMWqzcH0EBwLgsksGHwcC7m16FKFoTamWt7JTrb-MuISGUgseglHEM4d713X_ow4UYqJVMuZpOuxRivTcVc8LSvYCTPTV7gEqjUa2p0yfTJu2PBB9HgsRE9TeuZB-CWF79fDx7cT1m3x-xayVtXAdn-2hcF8YgOYC1dyF4pe_fAwKx75G7aoh9j4ihR5LszfFb3ovumgL_A8ntCzA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1814901671</pqid></control><display><type>article</type><title>In Vitro Biocompatibility of Si Alloyed Multi-Principal Element Carbide Coatings</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Vladescu, Alina ; Titorencu, Irina ; Dekhtyar, Yuri ; Jinga, Victor ; Pruna, Vasile ; Balaceanu, Mihai ; Dinu, Mihaela ; Pana, Iulian ; Vendina, Viktorija ; Braic, Mariana</creator><contributor>Mukherjee, Amitava</contributor><creatorcontrib>Vladescu, Alina ; Titorencu, Irina ; Dekhtyar, Yuri ; Jinga, Victor ; Pruna, Vasile ; Balaceanu, Mihai ; Dinu, Mihaela ; Pana, Iulian ; Vendina, Viktorija ; Braic, Mariana ; Mukherjee, Amitava</creatorcontrib><description>In the current study, we have examined the possibility to improve the biocompatibility of the (TiZrNbTaHf)C through replacement of either Ti or Ta by Si. The coatings were deposited on Si and 316L stainless steel substrates by magnetron sputtering in an Ar+CH4 mixed atmosphere and were examined for elemental composition, chemical bonds, surface topography, surface electrical charge and biocompatible characteristics. The net surface charge was evaluated at nano and macroscopic scale by measuring the electrical potential and work function, respectively. The biocompatible tests comprised determination of cell viability and cell attachment to the coated surface. The deposited coatings had C/(metal+Si) ratios close to unity, while a mixture of metallic carbide, free-carbon and oxidized species formed on the film surface. The coatings' surfaces were smooth and no influence of surface roughness on electrical charge or biocompatibility was found. The biocompatible characteristics correlated well with the electrical potential/work function, suggesting a significant role of surface charge in improving biocompatibility, particularly cell attachment to coating's surface. Replacement of either Ti or Ta by Si in the (TiZrNbTaHf)C coating led to an enhanced surface electrical charge, as well as to superior biocompatible properties, with best results for the (TiZrNbSiHf)C coating.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0161151</identifier><identifier>PMID: 27571361</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alloying elements ; Alloys ; Alloys - adverse effects ; Alloys - chemistry ; Austenitic stainless steels ; Biocompatibility ; Biology and Life Sciences ; Biomedical materials ; Cell adhesion ; Cell surface ; Cellular biology ; Chemical bonds ; Chemical composition ; Chemical properties ; Coated Materials, Biocompatible - adverse effects ; Coated Materials, Biocompatible - chemistry ; Coatings ; Composite materials ; Corrosion resistance ; Electric charge ; Electric potential ; Engineering and Technology ; Hydroxyapatite ; Magnetron sputtering ; Materials Testing ; Medicine and Health Sciences ; Pathology ; Physical Sciences ; Physiological aspects ; Research and Analysis Methods ; Silicon - chemistry ; Silicon carbide ; Silicon steels ; Silicon substrates ; Stainless steel ; Substrates ; Surface charge ; Surface Properties ; Surface roughness ; Tantalum ; Tantalum - adverse effects ; Tantalum - chemistry ; Titanium ; Titanium - adverse effects ; Titanium - chemistry ; Transplants &amp; implants ; X-Ray Diffraction</subject><ispartof>PloS one, 2016-08, Vol.11 (8), p.e0161151-e0161151</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Vladescu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Vladescu et al 2016 Vladescu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c791t-a9f2bf386f74a328a8e0dfef06f0eed5e7deb62d495f8ffe8adc255a7f2cf8823</citedby><cites>FETCH-LOGICAL-c791t-a9f2bf386f74a328a8e0dfef06f0eed5e7deb62d495f8ffe8adc255a7f2cf8823</cites><orcidid>0000-0002-2543-5866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003397/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003397/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27571361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mukherjee, Amitava</contributor><creatorcontrib>Vladescu, Alina</creatorcontrib><creatorcontrib>Titorencu, Irina</creatorcontrib><creatorcontrib>Dekhtyar, Yuri</creatorcontrib><creatorcontrib>Jinga, Victor</creatorcontrib><creatorcontrib>Pruna, Vasile</creatorcontrib><creatorcontrib>Balaceanu, Mihai</creatorcontrib><creatorcontrib>Dinu, Mihaela</creatorcontrib><creatorcontrib>Pana, Iulian</creatorcontrib><creatorcontrib>Vendina, Viktorija</creatorcontrib><creatorcontrib>Braic, Mariana</creatorcontrib><title>In Vitro Biocompatibility of Si Alloyed Multi-Principal Element Carbide Coatings</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In the current study, we have examined the possibility to improve the biocompatibility of the (TiZrNbTaHf)C through replacement of either Ti or Ta by Si. The coatings were deposited on Si and 316L stainless steel substrates by magnetron sputtering in an Ar+CH4 mixed atmosphere and were examined for elemental composition, chemical bonds, surface topography, surface electrical charge and biocompatible characteristics. The net surface charge was evaluated at nano and macroscopic scale by measuring the electrical potential and work function, respectively. The biocompatible tests comprised determination of cell viability and cell attachment to the coated surface. The deposited coatings had C/(metal+Si) ratios close to unity, while a mixture of metallic carbide, free-carbon and oxidized species formed on the film surface. The coatings' surfaces were smooth and no influence of surface roughness on electrical charge or biocompatibility was found. The biocompatible characteristics correlated well with the electrical potential/work function, suggesting a significant role of surface charge in improving biocompatibility, particularly cell attachment to coating's surface. Replacement of either Ti or Ta by Si in the (TiZrNbTaHf)C coating led to an enhanced surface electrical charge, as well as to superior biocompatible properties, with best results for the (TiZrNbSiHf)C coating.</description><subject>Alloying elements</subject><subject>Alloys</subject><subject>Alloys - adverse effects</subject><subject>Alloys - chemistry</subject><subject>Austenitic stainless steels</subject><subject>Biocompatibility</subject><subject>Biology and Life Sciences</subject><subject>Biomedical materials</subject><subject>Cell adhesion</subject><subject>Cell surface</subject><subject>Cellular biology</subject><subject>Chemical bonds</subject><subject>Chemical composition</subject><subject>Chemical properties</subject><subject>Coated Materials, Biocompatible - adverse effects</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coatings</subject><subject>Composite materials</subject><subject>Corrosion resistance</subject><subject>Electric charge</subject><subject>Electric potential</subject><subject>Engineering and Technology</subject><subject>Hydroxyapatite</subject><subject>Magnetron sputtering</subject><subject>Materials Testing</subject><subject>Medicine and Health Sciences</subject><subject>Pathology</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Research and Analysis Methods</subject><subject>Silicon - chemistry</subject><subject>Silicon carbide</subject><subject>Silicon steels</subject><subject>Silicon substrates</subject><subject>Stainless steel</subject><subject>Substrates</subject><subject>Surface charge</subject><subject>Surface Properties</subject><subject>Surface roughness</subject><subject>Tantalum</subject><subject>Tantalum - adverse effects</subject><subject>Tantalum - chemistry</subject><subject>Titanium</subject><subject>Titanium - adverse effects</subject><subject>Titanium - chemistry</subject><subject>Transplants &amp; implants</subject><subject>X-Ray Diffraction</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYqPwDxBEQkJw0eLvODdIpRpQaWgTg91aTmK3rpy4sx1E_z3umk0N2sXkC1v2874-59gny15DMIO4gJ82rvedtLOt69QMQAYhhU-yU1hiNGUI4KdH65PsRQgbACjmjD3PTlBBC4gZPM0ul11-baJ3-RfjatduZTSVsSbucqfzK5PPrXU71eQ_ehvN9NKbrjZbafMzq1rVxXwhfWUalS9cUnar8DJ7pqUN6tUwT7LfX89-Lb5Pzy--LRfz82ldlDBOZalRpVM4uiASIy65Ao1WGjANlGqoKhpVMdSQkmquteKyqRGlstCo1pwjPMneHny31gUxFCMIyCEpUzVSepNseSAaJzdi600r_U44acTthvMrIX00tVUCIaor1RBS8oowzLlkJSkLyCqCpJZl8vo83NZXrWrqlLmXdmQ6PunMWqzcH0EBwLgsksGHwcC7m16FKFoTamWt7JTrb-MuISGUgseglHEM4d713X_ow4UYqJVMuZpOuxRivTcVc8LSvYCTPTV7gEqjUa2p0yfTJu2PBB9HgsRE9TeuZB-CWF79fDx7cT1m3x-xayVtXAdn-2hcF8YgOYC1dyF4pe_fAwKx75G7aoh9j4ihR5LszfFb3ovumgL_A8ntCzA</recordid><startdate>20160829</startdate><enddate>20160829</enddate><creator>Vladescu, Alina</creator><creator>Titorencu, Irina</creator><creator>Dekhtyar, Yuri</creator><creator>Jinga, Victor</creator><creator>Pruna, Vasile</creator><creator>Balaceanu, Mihai</creator><creator>Dinu, Mihaela</creator><creator>Pana, Iulian</creator><creator>Vendina, Viktorija</creator><creator>Braic, Mariana</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2543-5866</orcidid></search><sort><creationdate>20160829</creationdate><title>In Vitro Biocompatibility of Si Alloyed Multi-Principal Element Carbide Coatings</title><author>Vladescu, Alina ; Titorencu, Irina ; Dekhtyar, Yuri ; Jinga, Victor ; Pruna, Vasile ; Balaceanu, Mihai ; Dinu, Mihaela ; Pana, Iulian ; Vendina, Viktorija ; Braic, Mariana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c791t-a9f2bf386f74a328a8e0dfef06f0eed5e7deb62d495f8ffe8adc255a7f2cf8823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alloying elements</topic><topic>Alloys</topic><topic>Alloys - adverse effects</topic><topic>Alloys - chemistry</topic><topic>Austenitic stainless steels</topic><topic>Biocompatibility</topic><topic>Biology and Life Sciences</topic><topic>Biomedical materials</topic><topic>Cell adhesion</topic><topic>Cell surface</topic><topic>Cellular biology</topic><topic>Chemical bonds</topic><topic>Chemical composition</topic><topic>Chemical properties</topic><topic>Coated Materials, Biocompatible - adverse effects</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coatings</topic><topic>Composite materials</topic><topic>Corrosion resistance</topic><topic>Electric charge</topic><topic>Electric potential</topic><topic>Engineering and Technology</topic><topic>Hydroxyapatite</topic><topic>Magnetron sputtering</topic><topic>Materials Testing</topic><topic>Medicine and Health Sciences</topic><topic>Pathology</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Research and Analysis Methods</topic><topic>Silicon - chemistry</topic><topic>Silicon carbide</topic><topic>Silicon steels</topic><topic>Silicon substrates</topic><topic>Stainless steel</topic><topic>Substrates</topic><topic>Surface charge</topic><topic>Surface Properties</topic><topic>Surface roughness</topic><topic>Tantalum</topic><topic>Tantalum - adverse effects</topic><topic>Tantalum - chemistry</topic><topic>Titanium</topic><topic>Titanium - adverse effects</topic><topic>Titanium - chemistry</topic><topic>Transplants &amp; implants</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vladescu, Alina</creatorcontrib><creatorcontrib>Titorencu, Irina</creatorcontrib><creatorcontrib>Dekhtyar, Yuri</creatorcontrib><creatorcontrib>Jinga, Victor</creatorcontrib><creatorcontrib>Pruna, Vasile</creatorcontrib><creatorcontrib>Balaceanu, Mihai</creatorcontrib><creatorcontrib>Dinu, Mihaela</creatorcontrib><creatorcontrib>Pana, Iulian</creatorcontrib><creatorcontrib>Vendina, Viktorija</creatorcontrib><creatorcontrib>Braic, Mariana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vladescu, Alina</au><au>Titorencu, Irina</au><au>Dekhtyar, Yuri</au><au>Jinga, Victor</au><au>Pruna, Vasile</au><au>Balaceanu, Mihai</au><au>Dinu, Mihaela</au><au>Pana, Iulian</au><au>Vendina, Viktorija</au><au>Braic, Mariana</au><au>Mukherjee, Amitava</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vitro Biocompatibility of Si Alloyed Multi-Principal Element Carbide Coatings</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-08-29</date><risdate>2016</risdate><volume>11</volume><issue>8</issue><spage>e0161151</spage><epage>e0161151</epage><pages>e0161151-e0161151</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In the current study, we have examined the possibility to improve the biocompatibility of the (TiZrNbTaHf)C through replacement of either Ti or Ta by Si. The coatings were deposited on Si and 316L stainless steel substrates by magnetron sputtering in an Ar+CH4 mixed atmosphere and were examined for elemental composition, chemical bonds, surface topography, surface electrical charge and biocompatible characteristics. The net surface charge was evaluated at nano and macroscopic scale by measuring the electrical potential and work function, respectively. The biocompatible tests comprised determination of cell viability and cell attachment to the coated surface. The deposited coatings had C/(metal+Si) ratios close to unity, while a mixture of metallic carbide, free-carbon and oxidized species formed on the film surface. The coatings' surfaces were smooth and no influence of surface roughness on electrical charge or biocompatibility was found. The biocompatible characteristics correlated well with the electrical potential/work function, suggesting a significant role of surface charge in improving biocompatibility, particularly cell attachment to coating's surface. Replacement of either Ti or Ta by Si in the (TiZrNbTaHf)C coating led to an enhanced surface electrical charge, as well as to superior biocompatible properties, with best results for the (TiZrNbSiHf)C coating.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27571361</pmid><doi>10.1371/journal.pone.0161151</doi><tpages>e0161151</tpages><orcidid>https://orcid.org/0000-0002-2543-5866</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-08, Vol.11 (8), p.e0161151-e0161151
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1814901671
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alloying elements
Alloys
Alloys - adverse effects
Alloys - chemistry
Austenitic stainless steels
Biocompatibility
Biology and Life Sciences
Biomedical materials
Cell adhesion
Cell surface
Cellular biology
Chemical bonds
Chemical composition
Chemical properties
Coated Materials, Biocompatible - adverse effects
Coated Materials, Biocompatible - chemistry
Coatings
Composite materials
Corrosion resistance
Electric charge
Electric potential
Engineering and Technology
Hydroxyapatite
Magnetron sputtering
Materials Testing
Medicine and Health Sciences
Pathology
Physical Sciences
Physiological aspects
Research and Analysis Methods
Silicon - chemistry
Silicon carbide
Silicon steels
Silicon substrates
Stainless steel
Substrates
Surface charge
Surface Properties
Surface roughness
Tantalum
Tantalum - adverse effects
Tantalum - chemistry
Titanium
Titanium - adverse effects
Titanium - chemistry
Transplants & implants
X-Ray Diffraction
title In Vitro Biocompatibility of Si Alloyed Multi-Principal Element Carbide Coatings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vitro%20Biocompatibility%20of%20Si%20Alloyed%20Multi-Principal%20Element%20Carbide%20Coatings&rft.jtitle=PloS%20one&rft.au=Vladescu,%20Alina&rft.date=2016-08-29&rft.volume=11&rft.issue=8&rft.spage=e0161151&rft.epage=e0161151&rft.pages=e0161151-e0161151&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0161151&rft_dat=%3Cgale_plos_%3EA461910841%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1814901671&rft_id=info:pmid/27571361&rft_galeid=A461910841&rft_doaj_id=oai_doaj_org_article_225fbed4498b46388a6949716b42afa9&rfr_iscdi=true