Discretization of Gene Expression Data Unmasks Molecular Subgroups Recurring in Different Human Cancer Types
Despite the individually different molecular alterations in tumors, the malignancy associated biological traits are strikingly similar. Results of a previous study using renal cell carcinoma (RCC) as a model pointed towards cancer-related features, which could be visualized as three groups by microa...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-08, Vol.11 (8), p.e0161514-e0161514 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0161514 |
---|---|
container_issue | 8 |
container_start_page | e0161514 |
container_title | PloS one |
container_volume | 11 |
creator | Beleut, Manfred Soeldner, Robert Egorov, Mark Guenther, Rolf Dehler, Silvia Morys-Wortmann, Corinna Moch, Holger Henco, Karsten Schraml, Peter |
description | Despite the individually different molecular alterations in tumors, the malignancy associated biological traits are strikingly similar. Results of a previous study using renal cell carcinoma (RCC) as a model pointed towards cancer-related features, which could be visualized as three groups by microarray based gene expression analysis. In this study, we used a mathematic model to verify the presence of these groups in RCC as well as in other cancer types. We developed an algorithm for gene-expression deviation profiling for analyzing gene expression data of a total of 8397 patients with 13 different cancer types and normal tissues. We revealed three common Cancer Transcriptomic Profiles (CTPs) which recurred in all investigated tumors. Additionally, CTPs remained robust regardless of the functions or numbers of genes analyzed. CTPs may represent common genetic fingerprints, which potentially reflect the closely related biological traits of human cancers. |
doi_str_mv | 10.1371/journal.pone.0161514 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1812825512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A461034673</galeid><doaj_id>oai_doaj_org_article_103452cb85f54c9fb6cf8056cdd7633a</doaj_id><sourcerecordid>A461034673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-9f5e50df15932d7698e11673c9ab32300311db9e5369cdce80bd20ebe70fc5313</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEoqXwBggiISG42MWHOIcbpGpb2pWKKvXAreU446yXrJ3aCWp5epxuWm1QLypfxJp883v8jyeK3mM0xzTD39a2d0Y089YamCOcYoaTF9E-LiiZpQTRlzv7veiN92uEGM3T9HW0RzJGM0qK_ag50l466PRf0WlrYqviEzAQH9-2DrwfQkeiE_G12Qj_28c_bQOyb4SLL_uydrZvfXwRIs5pU8c60FopcGC6-LTfCBMvhJHg4qu7Fvzb6JUSjYd34_cguv5xfLU4nZ2dnywXh2czmRHWzQrFgKFKYRbqr7K0yAHjNKOyECUlFCGKcVUWwGhayEpCjsqKICghQ0oyiulB9HGr2zbW89Eoz3GOSU4YwyQQyy1RWbHmrdMb4e64FZrfB6yruXCdlg1wjGjCiCxzplgiC1WmUuWIpbIKpVEqgtb38bS-3ECox3RONBPR6R-jV7y2f3hSFIiSLAh8GQWcvenBd3wTmgJNIwzY_r5ulhaEJvlzUJLnWUEGEz79hz5txEjVItxVG2VDiXIQ5YdJOtw9GB-o-RNUWBVstAwPUOkQnyR8nSQEpoPbrha993x5efF89vzXlP28w65ANN3K26Yf3q6fgskWlM5670A99gMjPszPgxt8mB8-zk9I-7Dby8ekh4Gh_wD8DxS2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812825512</pqid></control><display><type>article</type><title>Discretization of Gene Expression Data Unmasks Molecular Subgroups Recurring in Different Human Cancer Types</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Beleut, Manfred ; Soeldner, Robert ; Egorov, Mark ; Guenther, Rolf ; Dehler, Silvia ; Morys-Wortmann, Corinna ; Moch, Holger ; Henco, Karsten ; Schraml, Peter</creator><contributor>Tagliabue, Elda</contributor><creatorcontrib>Beleut, Manfred ; Soeldner, Robert ; Egorov, Mark ; Guenther, Rolf ; Dehler, Silvia ; Morys-Wortmann, Corinna ; Moch, Holger ; Henco, Karsten ; Schraml, Peter ; Tagliabue, Elda</creatorcontrib><description>Despite the individually different molecular alterations in tumors, the malignancy associated biological traits are strikingly similar. Results of a previous study using renal cell carcinoma (RCC) as a model pointed towards cancer-related features, which could be visualized as three groups by microarray based gene expression analysis. In this study, we used a mathematic model to verify the presence of these groups in RCC as well as in other cancer types. We developed an algorithm for gene-expression deviation profiling for analyzing gene expression data of a total of 8397 patients with 13 different cancer types and normal tissues. We revealed three common Cancer Transcriptomic Profiles (CTPs) which recurred in all investigated tumors. Additionally, CTPs remained robust regardless of the functions or numbers of genes analyzed. CTPs may represent common genetic fingerprints, which potentially reflect the closely related biological traits of human cancers.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0161514</identifier><identifier>PMID: 27537329</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Biological effects ; Biology and Life Sciences ; Cancer ; Cancer genetics ; Carcinoma, Renal Cell - classification ; Carcinoma, Renal Cell - genetics ; Carcinoma, Renal Cell - metabolism ; Classification ; Data processing ; DNA microarrays ; Functions (mathematics) ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic - genetics ; Genes, Neoplasm - genetics ; Genetic variation ; Genome-Wide Association Study ; Genomes ; Genomics ; Humans ; Kidney cancer ; Kidney Neoplasms - classification ; Kidney Neoplasms - genetics ; Kidney Neoplasms - metabolism ; Malignancy ; Medical prognosis ; Medicine and Health Sciences ; Models, Theoretical ; Mutation ; Neoplasms - classification ; Neoplasms - genetics ; Neoplasms - metabolism ; Oligonucleotide Array Sequence Analysis ; Pathology ; Physiological aspects ; Renal cell carcinoma ; Research and Analysis Methods ; Robustness (mathematics) ; Subgroups ; Tissues ; Tumors ; Values</subject><ispartof>PloS one, 2016-08, Vol.11 (8), p.e0161514-e0161514</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Beleut et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Beleut et al 2016 Beleut et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-9f5e50df15932d7698e11673c9ab32300311db9e5369cdce80bd20ebe70fc5313</citedby><cites>FETCH-LOGICAL-c725t-9f5e50df15932d7698e11673c9ab32300311db9e5369cdce80bd20ebe70fc5313</cites><orcidid>0000-0002-5610-156X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990327/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990327/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27537329$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tagliabue, Elda</contributor><creatorcontrib>Beleut, Manfred</creatorcontrib><creatorcontrib>Soeldner, Robert</creatorcontrib><creatorcontrib>Egorov, Mark</creatorcontrib><creatorcontrib>Guenther, Rolf</creatorcontrib><creatorcontrib>Dehler, Silvia</creatorcontrib><creatorcontrib>Morys-Wortmann, Corinna</creatorcontrib><creatorcontrib>Moch, Holger</creatorcontrib><creatorcontrib>Henco, Karsten</creatorcontrib><creatorcontrib>Schraml, Peter</creatorcontrib><title>Discretization of Gene Expression Data Unmasks Molecular Subgroups Recurring in Different Human Cancer Types</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Despite the individually different molecular alterations in tumors, the malignancy associated biological traits are strikingly similar. Results of a previous study using renal cell carcinoma (RCC) as a model pointed towards cancer-related features, which could be visualized as three groups by microarray based gene expression analysis. In this study, we used a mathematic model to verify the presence of these groups in RCC as well as in other cancer types. We developed an algorithm for gene-expression deviation profiling for analyzing gene expression data of a total of 8397 patients with 13 different cancer types and normal tissues. We revealed three common Cancer Transcriptomic Profiles (CTPs) which recurred in all investigated tumors. Additionally, CTPs remained robust regardless of the functions or numbers of genes analyzed. CTPs may represent common genetic fingerprints, which potentially reflect the closely related biological traits of human cancers.</description><subject>Algorithms</subject><subject>Biological effects</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Cancer genetics</subject><subject>Carcinoma, Renal Cell - classification</subject><subject>Carcinoma, Renal Cell - genetics</subject><subject>Carcinoma, Renal Cell - metabolism</subject><subject>Classification</subject><subject>Data processing</subject><subject>DNA microarrays</subject><subject>Functions (mathematics)</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic - genetics</subject><subject>Genes, Neoplasm - genetics</subject><subject>Genetic variation</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Kidney cancer</subject><subject>Kidney Neoplasms - classification</subject><subject>Kidney Neoplasms - genetics</subject><subject>Kidney Neoplasms - metabolism</subject><subject>Malignancy</subject><subject>Medical prognosis</subject><subject>Medicine and Health Sciences</subject><subject>Models, Theoretical</subject><subject>Mutation</subject><subject>Neoplasms - classification</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Pathology</subject><subject>Physiological aspects</subject><subject>Renal cell carcinoma</subject><subject>Research and Analysis Methods</subject><subject>Robustness (mathematics)</subject><subject>Subgroups</subject><subject>Tissues</subject><subject>Tumors</subject><subject>Values</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEoqXwBggiISG42MWHOIcbpGpb2pWKKvXAreU446yXrJ3aCWp5epxuWm1QLypfxJp883v8jyeK3mM0xzTD39a2d0Y089YamCOcYoaTF9E-LiiZpQTRlzv7veiN92uEGM3T9HW0RzJGM0qK_ag50l466PRf0WlrYqviEzAQH9-2DrwfQkeiE_G12Qj_28c_bQOyb4SLL_uydrZvfXwRIs5pU8c60FopcGC6-LTfCBMvhJHg4qu7Fvzb6JUSjYd34_cguv5xfLU4nZ2dnywXh2czmRHWzQrFgKFKYRbqr7K0yAHjNKOyECUlFCGKcVUWwGhayEpCjsqKICghQ0oyiulB9HGr2zbW89Eoz3GOSU4YwyQQyy1RWbHmrdMb4e64FZrfB6yruXCdlg1wjGjCiCxzplgiC1WmUuWIpbIKpVEqgtb38bS-3ECox3RONBPR6R-jV7y2f3hSFIiSLAh8GQWcvenBd3wTmgJNIwzY_r5ulhaEJvlzUJLnWUEGEz79hz5txEjVItxVG2VDiXIQ5YdJOtw9GB-o-RNUWBVstAwPUOkQnyR8nSQEpoPbrha993x5efF89vzXlP28w65ANN3K26Yf3q6fgskWlM5670A99gMjPszPgxt8mB8-zk9I-7Dby8ekh4Gh_wD8DxS2</recordid><startdate>20160818</startdate><enddate>20160818</enddate><creator>Beleut, Manfred</creator><creator>Soeldner, Robert</creator><creator>Egorov, Mark</creator><creator>Guenther, Rolf</creator><creator>Dehler, Silvia</creator><creator>Morys-Wortmann, Corinna</creator><creator>Moch, Holger</creator><creator>Henco, Karsten</creator><creator>Schraml, Peter</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5610-156X</orcidid></search><sort><creationdate>20160818</creationdate><title>Discretization of Gene Expression Data Unmasks Molecular Subgroups Recurring in Different Human Cancer Types</title><author>Beleut, Manfred ; Soeldner, Robert ; Egorov, Mark ; Guenther, Rolf ; Dehler, Silvia ; Morys-Wortmann, Corinna ; Moch, Holger ; Henco, Karsten ; Schraml, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-9f5e50df15932d7698e11673c9ab32300311db9e5369cdce80bd20ebe70fc5313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Biological effects</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Cancer genetics</topic><topic>Carcinoma, Renal Cell - classification</topic><topic>Carcinoma, Renal Cell - genetics</topic><topic>Carcinoma, Renal Cell - metabolism</topic><topic>Classification</topic><topic>Data processing</topic><topic>DNA microarrays</topic><topic>Functions (mathematics)</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic - genetics</topic><topic>Genes, Neoplasm - genetics</topic><topic>Genetic variation</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Kidney cancer</topic><topic>Kidney Neoplasms - classification</topic><topic>Kidney Neoplasms - genetics</topic><topic>Kidney Neoplasms - metabolism</topic><topic>Malignancy</topic><topic>Medical prognosis</topic><topic>Medicine and Health Sciences</topic><topic>Models, Theoretical</topic><topic>Mutation</topic><topic>Neoplasms - classification</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Pathology</topic><topic>Physiological aspects</topic><topic>Renal cell carcinoma</topic><topic>Research and Analysis Methods</topic><topic>Robustness (mathematics)</topic><topic>Subgroups</topic><topic>Tissues</topic><topic>Tumors</topic><topic>Values</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beleut, Manfred</creatorcontrib><creatorcontrib>Soeldner, Robert</creatorcontrib><creatorcontrib>Egorov, Mark</creatorcontrib><creatorcontrib>Guenther, Rolf</creatorcontrib><creatorcontrib>Dehler, Silvia</creatorcontrib><creatorcontrib>Morys-Wortmann, Corinna</creatorcontrib><creatorcontrib>Moch, Holger</creatorcontrib><creatorcontrib>Henco, Karsten</creatorcontrib><creatorcontrib>Schraml, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beleut, Manfred</au><au>Soeldner, Robert</au><au>Egorov, Mark</au><au>Guenther, Rolf</au><au>Dehler, Silvia</au><au>Morys-Wortmann, Corinna</au><au>Moch, Holger</au><au>Henco, Karsten</au><au>Schraml, Peter</au><au>Tagliabue, Elda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discretization of Gene Expression Data Unmasks Molecular Subgroups Recurring in Different Human Cancer Types</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-08-18</date><risdate>2016</risdate><volume>11</volume><issue>8</issue><spage>e0161514</spage><epage>e0161514</epage><pages>e0161514-e0161514</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Despite the individually different molecular alterations in tumors, the malignancy associated biological traits are strikingly similar. Results of a previous study using renal cell carcinoma (RCC) as a model pointed towards cancer-related features, which could be visualized as three groups by microarray based gene expression analysis. In this study, we used a mathematic model to verify the presence of these groups in RCC as well as in other cancer types. We developed an algorithm for gene-expression deviation profiling for analyzing gene expression data of a total of 8397 patients with 13 different cancer types and normal tissues. We revealed three common Cancer Transcriptomic Profiles (CTPs) which recurred in all investigated tumors. Additionally, CTPs remained robust regardless of the functions or numbers of genes analyzed. CTPs may represent common genetic fingerprints, which potentially reflect the closely related biological traits of human cancers.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27537329</pmid><doi>10.1371/journal.pone.0161514</doi><tpages>e0161514</tpages><orcidid>https://orcid.org/0000-0002-5610-156X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-08, Vol.11 (8), p.e0161514-e0161514 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1812825512 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Biological effects Biology and Life Sciences Cancer Cancer genetics Carcinoma, Renal Cell - classification Carcinoma, Renal Cell - genetics Carcinoma, Renal Cell - metabolism Classification Data processing DNA microarrays Functions (mathematics) Gene expression Gene Expression Profiling Gene Expression Regulation, Neoplastic - genetics Genes, Neoplasm - genetics Genetic variation Genome-Wide Association Study Genomes Genomics Humans Kidney cancer Kidney Neoplasms - classification Kidney Neoplasms - genetics Kidney Neoplasms - metabolism Malignancy Medical prognosis Medicine and Health Sciences Models, Theoretical Mutation Neoplasms - classification Neoplasms - genetics Neoplasms - metabolism Oligonucleotide Array Sequence Analysis Pathology Physiological aspects Renal cell carcinoma Research and Analysis Methods Robustness (mathematics) Subgroups Tissues Tumors Values |
title | Discretization of Gene Expression Data Unmasks Molecular Subgroups Recurring in Different Human Cancer Types |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discretization%20of%20Gene%20Expression%20Data%20Unmasks%20Molecular%20Subgroups%20Recurring%20in%20Different%20Human%20Cancer%20Types&rft.jtitle=PloS%20one&rft.au=Beleut,%20Manfred&rft.date=2016-08-18&rft.volume=11&rft.issue=8&rft.spage=e0161514&rft.epage=e0161514&rft.pages=e0161514-e0161514&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0161514&rft_dat=%3Cgale_plos_%3EA461034673%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812825512&rft_id=info:pmid/27537329&rft_galeid=A461034673&rft_doaj_id=oai_doaj_org_article_103452cb85f54c9fb6cf8056cdd7633a&rfr_iscdi=true |