COPD Exacerbation Biomarkers Validated Using Multiple Reaction Monitoring Mass Spectrometry

Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) result in considerable morbidity and mortality. However, there are no objective biomarkers to diagnose AECOPD. We used multiple reaction monitoring mass spectrometry to quantify 129 distinct proteins in plasma samples from patient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-08, Vol.11 (8), p.e0161129-e0161129
Hauptverfasser: Leung, Janice M, Chen, Virginia, Hollander, Zsuzsanna, Dai, Darlene, Tebbutt, Scott J, Aaron, Shawn D, Vandemheen, Kathy L, Rennard, Stephen I, FitzGerald, J Mark, Woodruff, Prescott G, Lazarus, Stephen C, Connett, John E, Coxson, Harvey O, Miller, Bruce, Borchers, Christoph, McManus, Bruce M, Ng, Raymond T, Sin, Don D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0161129
container_issue 8
container_start_page e0161129
container_title PloS one
container_volume 11
creator Leung, Janice M
Chen, Virginia
Hollander, Zsuzsanna
Dai, Darlene
Tebbutt, Scott J
Aaron, Shawn D
Vandemheen, Kathy L
Rennard, Stephen I
FitzGerald, J Mark
Woodruff, Prescott G
Lazarus, Stephen C
Connett, John E
Coxson, Harvey O
Miller, Bruce
Borchers, Christoph
McManus, Bruce M
Ng, Raymond T
Sin, Don D
description Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) result in considerable morbidity and mortality. However, there are no objective biomarkers to diagnose AECOPD. We used multiple reaction monitoring mass spectrometry to quantify 129 distinct proteins in plasma samples from patients with COPD. This analytical approach was first performed in a biomarker cohort of patients hospitalized with AECOPD (Cohort A, n = 72). Proteins differentially expressed between AECOPD and convalescent states were chosen using a false discovery rate 1.2. Protein selection and classifier building were performed using an elastic net logistic regression model. The performance of the biomarker panel was then tested in two independent AECOPD cohorts (Cohort B, n = 37, and Cohort C, n = 109) using leave-pair-out cross-validation methods. Five proteins were identified distinguishing AECOPD and convalescent states in Cohort A. Biomarker scores derived from this model were significantly higher during AECOPD than in the convalescent state in the discovery cohort (p
doi_str_mv 10.1371/journal.pone.0161129
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1812543120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A460819094</galeid><doaj_id>oai_doaj_org_article_01437b8b5ec945a5b6af48adf023c0af</doaj_id><sourcerecordid>A460819094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-62c93d9fbd0d93ac4b197a3b2516cb6eec843a136813b60b6c026d4db107a0763</originalsourceid><addsrcrecordid>eNqNksFuEzEQhlcIREvgDRCshIS4JNhrr9e-IJVQoFKrIqBcOFhjrzdxcdbB9iL69jjJtkoQB062PN_8nn9miuIpRjNMGvz62g-hBzdb-97MEGYYV-JecYwFqaasQuT-3v2oeBTjNUI14Yw9LI6qpq5qitlx8X1--eldefobtAkKkvV9-db6FYQfJsTyGzjbQjJteRVtvygvBpfs2pnyswG9hS98b5MP2yDEWH5ZG52CX5kUbh4XDzpw0TwZz0lx9f706_zj9Pzyw9n85HyqGeYpF6gFaUWnWtQKApoqLBogqqox04oZozklgAnjmCiGFNOoYi1tFUYNoIaRSfF8p7t2PsqxL1FijrNJgrP_SXG2I1oP13IdbDZ4Iz1YuX3wYSEhJKudkQhT0iiuaqMFraFWDDrKoe1QRTSCLmu9GX8b1Mq02vQpgDsQPYz0dikX_pekgtd5Rlng1SgQ_M_BxCRXNmrjHPTGD9u6ayayefw_aMU55YJn9MVf6L8bMVILyF5t3_lcot6IyhPKEMcCCZqpl3vU0oBLy-jdsJl4PATpDtTBxxhMd9cGjORmS2-LkJstleOW5rRn-y28S7pdS_IHPynjpg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812543120</pqid></control><display><type>article</type><title>COPD Exacerbation Biomarkers Validated Using Multiple Reaction Monitoring Mass Spectrometry</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Leung, Janice M ; Chen, Virginia ; Hollander, Zsuzsanna ; Dai, Darlene ; Tebbutt, Scott J ; Aaron, Shawn D ; Vandemheen, Kathy L ; Rennard, Stephen I ; FitzGerald, J Mark ; Woodruff, Prescott G ; Lazarus, Stephen C ; Connett, John E ; Coxson, Harvey O ; Miller, Bruce ; Borchers, Christoph ; McManus, Bruce M ; Ng, Raymond T ; Sin, Don D</creator><creatorcontrib>Leung, Janice M ; Chen, Virginia ; Hollander, Zsuzsanna ; Dai, Darlene ; Tebbutt, Scott J ; Aaron, Shawn D ; Vandemheen, Kathy L ; Rennard, Stephen I ; FitzGerald, J Mark ; Woodruff, Prescott G ; Lazarus, Stephen C ; Connett, John E ; Coxson, Harvey O ; Miller, Bruce ; Borchers, Christoph ; McManus, Bruce M ; Ng, Raymond T ; Sin, Don D</creatorcontrib><description>Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) result in considerable morbidity and mortality. However, there are no objective biomarkers to diagnose AECOPD. We used multiple reaction monitoring mass spectrometry to quantify 129 distinct proteins in plasma samples from patients with COPD. This analytical approach was first performed in a biomarker cohort of patients hospitalized with AECOPD (Cohort A, n = 72). Proteins differentially expressed between AECOPD and convalescent states were chosen using a false discovery rate &lt;0.01 and fold change &gt;1.2. Protein selection and classifier building were performed using an elastic net logistic regression model. The performance of the biomarker panel was then tested in two independent AECOPD cohorts (Cohort B, n = 37, and Cohort C, n = 109) using leave-pair-out cross-validation methods. Five proteins were identified distinguishing AECOPD and convalescent states in Cohort A. Biomarker scores derived from this model were significantly higher during AECOPD than in the convalescent state in the discovery cohort (p&lt;0.001). The receiver operating characteristic cross-validation area under the curve (CV-AUC) statistic was 0.73 in Cohort A, while in the replication cohorts the CV-AUC was 0.77 for Cohort B and 0.79 for Cohort C. A panel of five biomarkers shows promise in distinguishing AECOPD from convalescence and may provide the basis for a clinical blood test to diagnose AECOPD. Further validation in larger cohorts is necessary for future clinical translation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0161129</identifier><identifier>PMID: 27525416</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acute Disease ; Aged ; Analysis ; Apolipoproteins ; Biology and Life Sciences ; Biomarkers ; Biomarkers - blood ; Chronic obstructive lung disease ; Chronic obstructive pulmonary disease ; Clinical trials ; Convalescence ; Critical care ; Dyspnea ; Female ; Heart attacks ; Hospitals ; Humans ; Identification methods ; Lipoproteins ; Lung diseases ; Male ; Mass Spectrometry ; Mass spectroscopy ; Medicine ; Medicine and Health Sciences ; Middle Aged ; Monitoring ; Morbidity ; Mortality ; Obstructive lung disease ; Patients ; Protein folding ; Proteins ; Proteomics ; Pulmonary Disease, Chronic Obstructive - blood ; R&amp;D ; Regression analysis ; Regression models ; Research &amp; development ; Risk factors ; Rodents ; Scientific imaging ; Sleep ; Spectroscopy ; Statistical analysis ; Statistical methods</subject><ispartof>PloS one, 2016-08, Vol.11 (8), p.e0161129-e0161129</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Leung et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Leung et al 2016 Leung et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-62c93d9fbd0d93ac4b197a3b2516cb6eec843a136813b60b6c026d4db107a0763</citedby><cites>FETCH-LOGICAL-c618t-62c93d9fbd0d93ac4b197a3b2516cb6eec843a136813b60b6c026d4db107a0763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985129/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985129/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27525416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leung, Janice M</creatorcontrib><creatorcontrib>Chen, Virginia</creatorcontrib><creatorcontrib>Hollander, Zsuzsanna</creatorcontrib><creatorcontrib>Dai, Darlene</creatorcontrib><creatorcontrib>Tebbutt, Scott J</creatorcontrib><creatorcontrib>Aaron, Shawn D</creatorcontrib><creatorcontrib>Vandemheen, Kathy L</creatorcontrib><creatorcontrib>Rennard, Stephen I</creatorcontrib><creatorcontrib>FitzGerald, J Mark</creatorcontrib><creatorcontrib>Woodruff, Prescott G</creatorcontrib><creatorcontrib>Lazarus, Stephen C</creatorcontrib><creatorcontrib>Connett, John E</creatorcontrib><creatorcontrib>Coxson, Harvey O</creatorcontrib><creatorcontrib>Miller, Bruce</creatorcontrib><creatorcontrib>Borchers, Christoph</creatorcontrib><creatorcontrib>McManus, Bruce M</creatorcontrib><creatorcontrib>Ng, Raymond T</creatorcontrib><creatorcontrib>Sin, Don D</creatorcontrib><title>COPD Exacerbation Biomarkers Validated Using Multiple Reaction Monitoring Mass Spectrometry</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) result in considerable morbidity and mortality. However, there are no objective biomarkers to diagnose AECOPD. We used multiple reaction monitoring mass spectrometry to quantify 129 distinct proteins in plasma samples from patients with COPD. This analytical approach was first performed in a biomarker cohort of patients hospitalized with AECOPD (Cohort A, n = 72). Proteins differentially expressed between AECOPD and convalescent states were chosen using a false discovery rate &lt;0.01 and fold change &gt;1.2. Protein selection and classifier building were performed using an elastic net logistic regression model. The performance of the biomarker panel was then tested in two independent AECOPD cohorts (Cohort B, n = 37, and Cohort C, n = 109) using leave-pair-out cross-validation methods. Five proteins were identified distinguishing AECOPD and convalescent states in Cohort A. Biomarker scores derived from this model were significantly higher during AECOPD than in the convalescent state in the discovery cohort (p&lt;0.001). The receiver operating characteristic cross-validation area under the curve (CV-AUC) statistic was 0.73 in Cohort A, while in the replication cohorts the CV-AUC was 0.77 for Cohort B and 0.79 for Cohort C. A panel of five biomarkers shows promise in distinguishing AECOPD from convalescence and may provide the basis for a clinical blood test to diagnose AECOPD. Further validation in larger cohorts is necessary for future clinical translation.</description><subject>Acute Disease</subject><subject>Aged</subject><subject>Analysis</subject><subject>Apolipoproteins</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Biomarkers - blood</subject><subject>Chronic obstructive lung disease</subject><subject>Chronic obstructive pulmonary disease</subject><subject>Clinical trials</subject><subject>Convalescence</subject><subject>Critical care</subject><subject>Dyspnea</subject><subject>Female</subject><subject>Heart attacks</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Identification methods</subject><subject>Lipoproteins</subject><subject>Lung diseases</subject><subject>Male</subject><subject>Mass Spectrometry</subject><subject>Mass spectroscopy</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Monitoring</subject><subject>Morbidity</subject><subject>Mortality</subject><subject>Obstructive lung disease</subject><subject>Patients</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Pulmonary Disease, Chronic Obstructive - blood</subject><subject>R&amp;D</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Research &amp; development</subject><subject>Risk factors</subject><subject>Rodents</subject><subject>Scientific imaging</subject><subject>Sleep</subject><subject>Spectroscopy</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNksFuEzEQhlcIREvgDRCshIS4JNhrr9e-IJVQoFKrIqBcOFhjrzdxcdbB9iL69jjJtkoQB062PN_8nn9miuIpRjNMGvz62g-hBzdb-97MEGYYV-JecYwFqaasQuT-3v2oeBTjNUI14Yw9LI6qpq5qitlx8X1--eldefobtAkKkvV9-db6FYQfJsTyGzjbQjJteRVtvygvBpfs2pnyswG9hS98b5MP2yDEWH5ZG52CX5kUbh4XDzpw0TwZz0lx9f706_zj9Pzyw9n85HyqGeYpF6gFaUWnWtQKApoqLBogqqox04oZozklgAnjmCiGFNOoYi1tFUYNoIaRSfF8p7t2PsqxL1FijrNJgrP_SXG2I1oP13IdbDZ4Iz1YuX3wYSEhJKudkQhT0iiuaqMFraFWDDrKoe1QRTSCLmu9GX8b1Mq02vQpgDsQPYz0dikX_pekgtd5Rlng1SgQ_M_BxCRXNmrjHPTGD9u6ayayefw_aMU55YJn9MVf6L8bMVILyF5t3_lcot6IyhPKEMcCCZqpl3vU0oBLy-jdsJl4PATpDtTBxxhMd9cGjORmS2-LkJstleOW5rRn-y28S7pdS_IHPynjpg</recordid><startdate>20160815</startdate><enddate>20160815</enddate><creator>Leung, Janice M</creator><creator>Chen, Virginia</creator><creator>Hollander, Zsuzsanna</creator><creator>Dai, Darlene</creator><creator>Tebbutt, Scott J</creator><creator>Aaron, Shawn D</creator><creator>Vandemheen, Kathy L</creator><creator>Rennard, Stephen I</creator><creator>FitzGerald, J Mark</creator><creator>Woodruff, Prescott G</creator><creator>Lazarus, Stephen C</creator><creator>Connett, John E</creator><creator>Coxson, Harvey O</creator><creator>Miller, Bruce</creator><creator>Borchers, Christoph</creator><creator>McManus, Bruce M</creator><creator>Ng, Raymond T</creator><creator>Sin, Don D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160815</creationdate><title>COPD Exacerbation Biomarkers Validated Using Multiple Reaction Monitoring Mass Spectrometry</title><author>Leung, Janice M ; Chen, Virginia ; Hollander, Zsuzsanna ; Dai, Darlene ; Tebbutt, Scott J ; Aaron, Shawn D ; Vandemheen, Kathy L ; Rennard, Stephen I ; FitzGerald, J Mark ; Woodruff, Prescott G ; Lazarus, Stephen C ; Connett, John E ; Coxson, Harvey O ; Miller, Bruce ; Borchers, Christoph ; McManus, Bruce M ; Ng, Raymond T ; Sin, Don D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-62c93d9fbd0d93ac4b197a3b2516cb6eec843a136813b60b6c026d4db107a0763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acute Disease</topic><topic>Aged</topic><topic>Analysis</topic><topic>Apolipoproteins</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Biomarkers - blood</topic><topic>Chronic obstructive lung disease</topic><topic>Chronic obstructive pulmonary disease</topic><topic>Clinical trials</topic><topic>Convalescence</topic><topic>Critical care</topic><topic>Dyspnea</topic><topic>Female</topic><topic>Heart attacks</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Identification methods</topic><topic>Lipoproteins</topic><topic>Lung diseases</topic><topic>Male</topic><topic>Mass Spectrometry</topic><topic>Mass spectroscopy</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Monitoring</topic><topic>Morbidity</topic><topic>Mortality</topic><topic>Obstructive lung disease</topic><topic>Patients</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Pulmonary Disease, Chronic Obstructive - blood</topic><topic>R&amp;D</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Research &amp; development</topic><topic>Risk factors</topic><topic>Rodents</topic><topic>Scientific imaging</topic><topic>Sleep</topic><topic>Spectroscopy</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leung, Janice M</creatorcontrib><creatorcontrib>Chen, Virginia</creatorcontrib><creatorcontrib>Hollander, Zsuzsanna</creatorcontrib><creatorcontrib>Dai, Darlene</creatorcontrib><creatorcontrib>Tebbutt, Scott J</creatorcontrib><creatorcontrib>Aaron, Shawn D</creatorcontrib><creatorcontrib>Vandemheen, Kathy L</creatorcontrib><creatorcontrib>Rennard, Stephen I</creatorcontrib><creatorcontrib>FitzGerald, J Mark</creatorcontrib><creatorcontrib>Woodruff, Prescott G</creatorcontrib><creatorcontrib>Lazarus, Stephen C</creatorcontrib><creatorcontrib>Connett, John E</creatorcontrib><creatorcontrib>Coxson, Harvey O</creatorcontrib><creatorcontrib>Miller, Bruce</creatorcontrib><creatorcontrib>Borchers, Christoph</creatorcontrib><creatorcontrib>McManus, Bruce M</creatorcontrib><creatorcontrib>Ng, Raymond T</creatorcontrib><creatorcontrib>Sin, Don D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leung, Janice M</au><au>Chen, Virginia</au><au>Hollander, Zsuzsanna</au><au>Dai, Darlene</au><au>Tebbutt, Scott J</au><au>Aaron, Shawn D</au><au>Vandemheen, Kathy L</au><au>Rennard, Stephen I</au><au>FitzGerald, J Mark</au><au>Woodruff, Prescott G</au><au>Lazarus, Stephen C</au><au>Connett, John E</au><au>Coxson, Harvey O</au><au>Miller, Bruce</au><au>Borchers, Christoph</au><au>McManus, Bruce M</au><au>Ng, Raymond T</au><au>Sin, Don D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COPD Exacerbation Biomarkers Validated Using Multiple Reaction Monitoring Mass Spectrometry</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-08-15</date><risdate>2016</risdate><volume>11</volume><issue>8</issue><spage>e0161129</spage><epage>e0161129</epage><pages>e0161129-e0161129</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) result in considerable morbidity and mortality. However, there are no objective biomarkers to diagnose AECOPD. We used multiple reaction monitoring mass spectrometry to quantify 129 distinct proteins in plasma samples from patients with COPD. This analytical approach was first performed in a biomarker cohort of patients hospitalized with AECOPD (Cohort A, n = 72). Proteins differentially expressed between AECOPD and convalescent states were chosen using a false discovery rate &lt;0.01 and fold change &gt;1.2. Protein selection and classifier building were performed using an elastic net logistic regression model. The performance of the biomarker panel was then tested in two independent AECOPD cohorts (Cohort B, n = 37, and Cohort C, n = 109) using leave-pair-out cross-validation methods. Five proteins were identified distinguishing AECOPD and convalescent states in Cohort A. Biomarker scores derived from this model were significantly higher during AECOPD than in the convalescent state in the discovery cohort (p&lt;0.001). The receiver operating characteristic cross-validation area under the curve (CV-AUC) statistic was 0.73 in Cohort A, while in the replication cohorts the CV-AUC was 0.77 for Cohort B and 0.79 for Cohort C. A panel of five biomarkers shows promise in distinguishing AECOPD from convalescence and may provide the basis for a clinical blood test to diagnose AECOPD. Further validation in larger cohorts is necessary for future clinical translation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27525416</pmid><doi>10.1371/journal.pone.0161129</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-08, Vol.11 (8), p.e0161129-e0161129
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1812543120
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Acute Disease
Aged
Analysis
Apolipoproteins
Biology and Life Sciences
Biomarkers
Biomarkers - blood
Chronic obstructive lung disease
Chronic obstructive pulmonary disease
Clinical trials
Convalescence
Critical care
Dyspnea
Female
Heart attacks
Hospitals
Humans
Identification methods
Lipoproteins
Lung diseases
Male
Mass Spectrometry
Mass spectroscopy
Medicine
Medicine and Health Sciences
Middle Aged
Monitoring
Morbidity
Mortality
Obstructive lung disease
Patients
Protein folding
Proteins
Proteomics
Pulmonary Disease, Chronic Obstructive - blood
R&D
Regression analysis
Regression models
Research & development
Risk factors
Rodents
Scientific imaging
Sleep
Spectroscopy
Statistical analysis
Statistical methods
title COPD Exacerbation Biomarkers Validated Using Multiple Reaction Monitoring Mass Spectrometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COPD%20Exacerbation%20Biomarkers%20Validated%20Using%20Multiple%20Reaction%20Monitoring%20Mass%20Spectrometry&rft.jtitle=PloS%20one&rft.au=Leung,%20Janice%20M&rft.date=2016-08-15&rft.volume=11&rft.issue=8&rft.spage=e0161129&rft.epage=e0161129&rft.pages=e0161129-e0161129&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0161129&rft_dat=%3Cgale_plos_%3EA460819094%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812543120&rft_id=info:pmid/27525416&rft_galeid=A460819094&rft_doaj_id=oai_doaj_org_article_01437b8b5ec945a5b6af48adf023c0af&rfr_iscdi=true