Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering

Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2016-07, Vol.12 (7), p.e1004791-e1004791
Hauptverfasser: Gao, Chuan, McDowell, Ian C, Zhao, Shiwen, Brown, Christopher D, Engelhardt, Barbara E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1004791
container_issue 7
container_start_page e1004791
container_title PLoS computational biology
container_volume 12
creator Gao, Chuan
McDowell, Ian C
Zhao, Shiwen
Brown, Christopher D
Engelhardt, Barbara E
description Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues.
doi_str_mv 10.1371/journal.pcbi.1004791
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1811906074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A479470545</galeid><doaj_id>oai_doaj_org_article_e95ad5fe41fe4adeb8b2d2fe5acce394</doaj_id><sourcerecordid>A479470545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c666t-ff5b0e82ceafc5766bc8e1143348a5da7b0d2f6aa95f99a4585f50aa502584163</originalsourceid><addsrcrecordid>eNqVklFvFCEUhSdGY2v1HxidxBd92BVmgIGXJu2qdZOmJlbjI7nDXFbqLKwwU9t_L9vdNl3jg4YQCHz3cDk5RfGckimtG_r2IozRQz9dmdZNKSGsUfRBsU85rydNzeXDe_u94klKF4TkrRKPi72qYaLhldgvvs2CH_BqKM9XaJx1pgTfle-ctRjRDw768gQ9lrMwwatVxJRc8OUZDr9C_JHKSwflMVxjcuDLY2f6MQ0YnV88LR5Z6BM-264HxdcP77_MPk5OP53MZ0enEyOEGCbW8pagrAyCNbwRojUSKWV1zSTwDpqWdJUVAIpbpYBxyS0nAJxUXDIq6oPi5UZ31Yekt54kTSWligjSsEzMN0QX4EKvoltCvNYBnL45CHGhIQ65ddSoOHTcIqN5QoetbKv8PHIwBmu11jrcvja2S-xMdihCvyO6e-Pdd70Il5opwYmSWeD1ViCGnyOmQS9dMtj34DGMN31zoQTj1T-gpJFKErZGX_2B_t2I6YZaQP6r8zbkFk0eHS6dCR6ty-dHOUesIZzxXPBmp8BsorKAMSU9P__8H-zZLss2rIkhpYj2zkBK9Drbt-3rdbb1Ntu57MV98--KbsNc_wb4Qfac</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811906074</pqid></control><display><type>article</type><title>Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gao, Chuan ; McDowell, Ian C ; Zhao, Shiwen ; Brown, Christopher D ; Engelhardt, Barbara E</creator><contributor>Zhou, Xianghong Jasmine</contributor><creatorcontrib>Gao, Chuan ; McDowell, Ian C ; Zhao, Shiwen ; Brown, Christopher D ; Engelhardt, Barbara E ; Zhou, Xianghong Jasmine</creatorcontrib><description>Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004791</identifier><identifier>PMID: 27467526</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bayes Theorem ; Bayesian analysis ; Biology and Life Sciences ; Breast cancer ; Breast Neoplasms - genetics ; Breast Neoplasms - metabolism ; Cluster Analysis ; Computational Biology - methods ; Computer and Information Sciences ; Data processing ; Experiments ; Female ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation, Neoplastic - genetics ; Gene Regulatory Networks - genetics ; Genetic research ; Humans ; Male ; Medicine and Health Sciences ; Methods ; Models, Genetic ; Oligonucleotide Array Sequence Analysis ; Ontology ; Physical Sciences ; Research and Analysis Methods ; Sparsity ; Veins &amp; arteries</subject><ispartof>PLoS computational biology, 2016-07, Vol.12 (7), p.e1004791-e1004791</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Gao C, McDowell IC, Zhao S, Brown CD, Engelhardt BE (2016) Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering. PLoS Comput Biol 12(7): e1004791. doi:10.1371/journal.pcbi.1004791</rights><rights>2016 Gao et al 2016 Gao et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Gao C, McDowell IC, Zhao S, Brown CD, Engelhardt BE (2016) Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering. PLoS Comput Biol 12(7): e1004791. doi:10.1371/journal.pcbi.1004791</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c666t-ff5b0e82ceafc5766bc8e1143348a5da7b0d2f6aa95f99a4585f50aa502584163</citedby><cites>FETCH-LOGICAL-c666t-ff5b0e82ceafc5766bc8e1143348a5da7b0d2f6aa95f99a4585f50aa502584163</cites><orcidid>0000-0002-1399-8450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965098/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965098/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27467526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhou, Xianghong Jasmine</contributor><creatorcontrib>Gao, Chuan</creatorcontrib><creatorcontrib>McDowell, Ian C</creatorcontrib><creatorcontrib>Zhao, Shiwen</creatorcontrib><creatorcontrib>Brown, Christopher D</creatorcontrib><creatorcontrib>Engelhardt, Barbara E</creatorcontrib><title>Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - metabolism</subject><subject>Cluster Analysis</subject><subject>Computational Biology - methods</subject><subject>Computer and Information Sciences</subject><subject>Data processing</subject><subject>Experiments</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Neoplastic - genetics</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genetic research</subject><subject>Humans</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Models, Genetic</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Ontology</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Sparsity</subject><subject>Veins &amp; arteries</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVklFvFCEUhSdGY2v1HxidxBd92BVmgIGXJu2qdZOmJlbjI7nDXFbqLKwwU9t_L9vdNl3jg4YQCHz3cDk5RfGckimtG_r2IozRQz9dmdZNKSGsUfRBsU85rydNzeXDe_u94klKF4TkrRKPi72qYaLhldgvvs2CH_BqKM9XaJx1pgTfle-ctRjRDw768gQ9lrMwwatVxJRc8OUZDr9C_JHKSwflMVxjcuDLY2f6MQ0YnV88LR5Z6BM-264HxdcP77_MPk5OP53MZ0enEyOEGCbW8pagrAyCNbwRojUSKWV1zSTwDpqWdJUVAIpbpYBxyS0nAJxUXDIq6oPi5UZ31Yekt54kTSWligjSsEzMN0QX4EKvoltCvNYBnL45CHGhIQ65ddSoOHTcIqN5QoetbKv8PHIwBmu11jrcvja2S-xMdihCvyO6e-Pdd70Il5opwYmSWeD1ViCGnyOmQS9dMtj34DGMN31zoQTj1T-gpJFKErZGX_2B_t2I6YZaQP6r8zbkFk0eHS6dCR6ty-dHOUesIZzxXPBmp8BsorKAMSU9P__8H-zZLss2rIkhpYj2zkBK9Drbt-3rdbb1Ntu57MV98--KbsNc_wb4Qfac</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Gao, Chuan</creator><creator>McDowell, Ian C</creator><creator>Zhao, Shiwen</creator><creator>Brown, Christopher D</creator><creator>Engelhardt, Barbara E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1399-8450</orcidid></search><sort><creationdate>20160701</creationdate><title>Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering</title><author>Gao, Chuan ; McDowell, Ian C ; Zhao, Shiwen ; Brown, Christopher D ; Engelhardt, Barbara E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c666t-ff5b0e82ceafc5766bc8e1143348a5da7b0d2f6aa95f99a4585f50aa502584163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - metabolism</topic><topic>Cluster Analysis</topic><topic>Computational Biology - methods</topic><topic>Computer and Information Sciences</topic><topic>Data processing</topic><topic>Experiments</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Neoplastic - genetics</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genetic research</topic><topic>Humans</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Models, Genetic</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Ontology</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Sparsity</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Chuan</creatorcontrib><creatorcontrib>McDowell, Ian C</creatorcontrib><creatorcontrib>Zhao, Shiwen</creatorcontrib><creatorcontrib>Brown, Christopher D</creatorcontrib><creatorcontrib>Engelhardt, Barbara E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Chuan</au><au>McDowell, Ian C</au><au>Zhao, Shiwen</au><au>Brown, Christopher D</au><au>Engelhardt, Barbara E</au><au>Zhou, Xianghong Jasmine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>12</volume><issue>7</issue><spage>e1004791</spage><epage>e1004791</epage><pages>e1004791-e1004791</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27467526</pmid><doi>10.1371/journal.pcbi.1004791</doi><orcidid>https://orcid.org/0000-0002-1399-8450</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2016-07, Vol.12 (7), p.e1004791-e1004791
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1811906074
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Bayes Theorem
Bayesian analysis
Biology and Life Sciences
Breast cancer
Breast Neoplasms - genetics
Breast Neoplasms - metabolism
Cluster Analysis
Computational Biology - methods
Computer and Information Sciences
Data processing
Experiments
Female
Gene expression
Gene Expression Profiling - methods
Gene Expression Regulation, Neoplastic - genetics
Gene Regulatory Networks - genetics
Genetic research
Humans
Male
Medicine and Health Sciences
Methods
Models, Genetic
Oligonucleotide Array Sequence Analysis
Ontology
Physical Sciences
Research and Analysis Methods
Sparsity
Veins & arteries
title Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Context%20Specific%20and%20Differential%20Gene%20Co-expression%20Networks%20via%20Bayesian%20Biclustering&rft.jtitle=PLoS%20computational%20biology&rft.au=Gao,%20Chuan&rft.date=2016-07-01&rft.volume=12&rft.issue=7&rft.spage=e1004791&rft.epage=e1004791&rft.pages=e1004791-e1004791&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004791&rft_dat=%3Cgale_plos_%3EA479470545%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811906074&rft_id=info:pmid/27467526&rft_galeid=A479470545&rft_doaj_id=oai_doaj_org_article_e95ad5fe41fe4adeb8b2d2fe5acce394&rfr_iscdi=true