Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering
Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechani...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2016-07, Vol.12 (7), p.e1004791-e1004791 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1004791 |
---|---|
container_issue | 7 |
container_start_page | e1004791 |
container_title | PLoS computational biology |
container_volume | 12 |
creator | Gao, Chuan McDowell, Ian C Zhao, Shiwen Brown, Christopher D Engelhardt, Barbara E |
description | Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues. |
doi_str_mv | 10.1371/journal.pcbi.1004791 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1811906074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A479470545</galeid><doaj_id>oai_doaj_org_article_e95ad5fe41fe4adeb8b2d2fe5acce394</doaj_id><sourcerecordid>A479470545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c666t-ff5b0e82ceafc5766bc8e1143348a5da7b0d2f6aa95f99a4585f50aa502584163</originalsourceid><addsrcrecordid>eNqVklFvFCEUhSdGY2v1HxidxBd92BVmgIGXJu2qdZOmJlbjI7nDXFbqLKwwU9t_L9vdNl3jg4YQCHz3cDk5RfGckimtG_r2IozRQz9dmdZNKSGsUfRBsU85rydNzeXDe_u94klKF4TkrRKPi72qYaLhldgvvs2CH_BqKM9XaJx1pgTfle-ctRjRDw768gQ9lrMwwatVxJRc8OUZDr9C_JHKSwflMVxjcuDLY2f6MQ0YnV88LR5Z6BM-264HxdcP77_MPk5OP53MZ0enEyOEGCbW8pagrAyCNbwRojUSKWV1zSTwDpqWdJUVAIpbpYBxyS0nAJxUXDIq6oPi5UZ31Yekt54kTSWligjSsEzMN0QX4EKvoltCvNYBnL45CHGhIQ65ddSoOHTcIqN5QoetbKv8PHIwBmu11jrcvja2S-xMdihCvyO6e-Pdd70Il5opwYmSWeD1ViCGnyOmQS9dMtj34DGMN31zoQTj1T-gpJFKErZGX_2B_t2I6YZaQP6r8zbkFk0eHS6dCR6ty-dHOUesIZzxXPBmp8BsorKAMSU9P__8H-zZLss2rIkhpYj2zkBK9Drbt-3rdbb1Ntu57MV98--KbsNc_wb4Qfac</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811906074</pqid></control><display><type>article</type><title>Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gao, Chuan ; McDowell, Ian C ; Zhao, Shiwen ; Brown, Christopher D ; Engelhardt, Barbara E</creator><contributor>Zhou, Xianghong Jasmine</contributor><creatorcontrib>Gao, Chuan ; McDowell, Ian C ; Zhao, Shiwen ; Brown, Christopher D ; Engelhardt, Barbara E ; Zhou, Xianghong Jasmine</creatorcontrib><description>Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004791</identifier><identifier>PMID: 27467526</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bayes Theorem ; Bayesian analysis ; Biology and Life Sciences ; Breast cancer ; Breast Neoplasms - genetics ; Breast Neoplasms - metabolism ; Cluster Analysis ; Computational Biology - methods ; Computer and Information Sciences ; Data processing ; Experiments ; Female ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation, Neoplastic - genetics ; Gene Regulatory Networks - genetics ; Genetic research ; Humans ; Male ; Medicine and Health Sciences ; Methods ; Models, Genetic ; Oligonucleotide Array Sequence Analysis ; Ontology ; Physical Sciences ; Research and Analysis Methods ; Sparsity ; Veins & arteries</subject><ispartof>PLoS computational biology, 2016-07, Vol.12 (7), p.e1004791-e1004791</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Gao C, McDowell IC, Zhao S, Brown CD, Engelhardt BE (2016) Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering. PLoS Comput Biol 12(7): e1004791. doi:10.1371/journal.pcbi.1004791</rights><rights>2016 Gao et al 2016 Gao et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Gao C, McDowell IC, Zhao S, Brown CD, Engelhardt BE (2016) Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering. PLoS Comput Biol 12(7): e1004791. doi:10.1371/journal.pcbi.1004791</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c666t-ff5b0e82ceafc5766bc8e1143348a5da7b0d2f6aa95f99a4585f50aa502584163</citedby><cites>FETCH-LOGICAL-c666t-ff5b0e82ceafc5766bc8e1143348a5da7b0d2f6aa95f99a4585f50aa502584163</cites><orcidid>0000-0002-1399-8450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965098/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965098/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27467526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhou, Xianghong Jasmine</contributor><creatorcontrib>Gao, Chuan</creatorcontrib><creatorcontrib>McDowell, Ian C</creatorcontrib><creatorcontrib>Zhao, Shiwen</creatorcontrib><creatorcontrib>Brown, Christopher D</creatorcontrib><creatorcontrib>Engelhardt, Barbara E</creatorcontrib><title>Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - metabolism</subject><subject>Cluster Analysis</subject><subject>Computational Biology - methods</subject><subject>Computer and Information Sciences</subject><subject>Data processing</subject><subject>Experiments</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Neoplastic - genetics</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genetic research</subject><subject>Humans</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Models, Genetic</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Ontology</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Sparsity</subject><subject>Veins & arteries</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVklFvFCEUhSdGY2v1HxidxBd92BVmgIGXJu2qdZOmJlbjI7nDXFbqLKwwU9t_L9vdNl3jg4YQCHz3cDk5RfGckimtG_r2IozRQz9dmdZNKSGsUfRBsU85rydNzeXDe_u94klKF4TkrRKPi72qYaLhldgvvs2CH_BqKM9XaJx1pgTfle-ctRjRDw768gQ9lrMwwatVxJRc8OUZDr9C_JHKSwflMVxjcuDLY2f6MQ0YnV88LR5Z6BM-264HxdcP77_MPk5OP53MZ0enEyOEGCbW8pagrAyCNbwRojUSKWV1zSTwDpqWdJUVAIpbpYBxyS0nAJxUXDIq6oPi5UZ31Yekt54kTSWligjSsEzMN0QX4EKvoltCvNYBnL45CHGhIQ65ddSoOHTcIqN5QoetbKv8PHIwBmu11jrcvja2S-xMdihCvyO6e-Pdd70Il5opwYmSWeD1ViCGnyOmQS9dMtj34DGMN31zoQTj1T-gpJFKErZGX_2B_t2I6YZaQP6r8zbkFk0eHS6dCR6ty-dHOUesIZzxXPBmp8BsorKAMSU9P__8H-zZLss2rIkhpYj2zkBK9Drbt-3rdbb1Ntu57MV98--KbsNc_wb4Qfac</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Gao, Chuan</creator><creator>McDowell, Ian C</creator><creator>Zhao, Shiwen</creator><creator>Brown, Christopher D</creator><creator>Engelhardt, Barbara E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1399-8450</orcidid></search><sort><creationdate>20160701</creationdate><title>Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering</title><author>Gao, Chuan ; McDowell, Ian C ; Zhao, Shiwen ; Brown, Christopher D ; Engelhardt, Barbara E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c666t-ff5b0e82ceafc5766bc8e1143348a5da7b0d2f6aa95f99a4585f50aa502584163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - metabolism</topic><topic>Cluster Analysis</topic><topic>Computational Biology - methods</topic><topic>Computer and Information Sciences</topic><topic>Data processing</topic><topic>Experiments</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Neoplastic - genetics</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genetic research</topic><topic>Humans</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Models, Genetic</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Ontology</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Sparsity</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Chuan</creatorcontrib><creatorcontrib>McDowell, Ian C</creatorcontrib><creatorcontrib>Zhao, Shiwen</creatorcontrib><creatorcontrib>Brown, Christopher D</creatorcontrib><creatorcontrib>Engelhardt, Barbara E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Chuan</au><au>McDowell, Ian C</au><au>Zhao, Shiwen</au><au>Brown, Christopher D</au><au>Engelhardt, Barbara E</au><au>Zhou, Xianghong Jasmine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>12</volume><issue>7</issue><spage>e1004791</spage><epage>e1004791</epage><pages>e1004791-e1004791</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27467526</pmid><doi>10.1371/journal.pcbi.1004791</doi><orcidid>https://orcid.org/0000-0002-1399-8450</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2016-07, Vol.12 (7), p.e1004791-e1004791 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1811906074 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Bayes Theorem Bayesian analysis Biology and Life Sciences Breast cancer Breast Neoplasms - genetics Breast Neoplasms - metabolism Cluster Analysis Computational Biology - methods Computer and Information Sciences Data processing Experiments Female Gene expression Gene Expression Profiling - methods Gene Expression Regulation, Neoplastic - genetics Gene Regulatory Networks - genetics Genetic research Humans Male Medicine and Health Sciences Methods Models, Genetic Oligonucleotide Array Sequence Analysis Ontology Physical Sciences Research and Analysis Methods Sparsity Veins & arteries |
title | Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Context%20Specific%20and%20Differential%20Gene%20Co-expression%20Networks%20via%20Bayesian%20Biclustering&rft.jtitle=PLoS%20computational%20biology&rft.au=Gao,%20Chuan&rft.date=2016-07-01&rft.volume=12&rft.issue=7&rft.spage=e1004791&rft.epage=e1004791&rft.pages=e1004791-e1004791&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004791&rft_dat=%3Cgale_plos_%3EA479470545%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811906074&rft_id=info:pmid/27467526&rft_galeid=A479470545&rft_doaj_id=oai_doaj_org_article_e95ad5fe41fe4adeb8b2d2fe5acce394&rfr_iscdi=true |