Srs2 and Mus81-Mms4 Prevent Accumulation of Toxic Inter-Homolog Recombination Intermediates

Homologous recombination is an evolutionally conserved mechanism that promotes genome stability through the faithful repair of double-strand breaks and single-strand gaps in DNA, and the recovery of stalled or collapsed replication forks. Saccharomyces cerevisiae ATP-dependent DNA helicase Srs2 (a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2016-07, Vol.12 (7), p.e1006136-e1006136
Hauptverfasser: Keyamura, Kenji, Arai, Kota, Hishida, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1006136
container_issue 7
container_start_page e1006136
container_title PLoS genetics
container_volume 12
creator Keyamura, Kenji
Arai, Kota
Hishida, Takashi
description Homologous recombination is an evolutionally conserved mechanism that promotes genome stability through the faithful repair of double-strand breaks and single-strand gaps in DNA, and the recovery of stalled or collapsed replication forks. Saccharomyces cerevisiae ATP-dependent DNA helicase Srs2 (a member of the highly conserved UvrD family of helicases) has multiple roles in regulating homologous recombination. A mutation (srs2K41A) resulting in a helicase-dead mutant of Srs2 was found to be lethal in diploid, but not in haploid, cells. In diploid cells, Srs2K41A caused the accumulation of inter-homolog joint molecule intermediates, increased the levels of spontaneous Rad52 foci, and induced gross chromosomal rearrangements. Srs2K41A lethality and accumulation of joint molecules were suppressed by inactivating Rad51 or deleting the Rad51-interaction domain of Srs2, whereas phosphorylation and sumoylation of Srs2 and its interaction with sumoylated proliferating cell nuclear antigen (PCNA) were not required for lethality. The structure-specific complex of crossover junction endonucleases Mus81 and Mms4 was also required for viability of diploid, but not haploid, SRS2 deletion mutants (srs2Δ), and diploid srs2Δ mus81Δ mutants accumulated joint molecule intermediates. Our data suggest that Srs2 and Mus81-Mms4 have critical roles in preventing the formation of (or in resolving) toxic inter-homolog joint molecules, which could otherwise interfere with chromosome segregation and lead to genetic instability.
doi_str_mv 10.1371/journal.pgen.1006136
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1811743897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A479477195</galeid><doaj_id>oai_doaj_org_article_09cd3aa9bcf3410dbc354c8f08392753</doaj_id><sourcerecordid>A479477195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c895t-934fd95d3a1301be94a024bd8ccddd970bc07137ae104259365e1cbb22e3ebfe3</originalsourceid><addsrcrecordid>eNqVk8Fu1DAQhiMEoqXwBggiISE4ZLFjex1fKq0qoCu1FLWFCwfLcSZZr5J4sZOqvD3OblptUA9FPtiyv_n9z9gTRa8xmmHC8ae17V2r6tmmgnaGEZpjMn8SHWLGSMIpok_31gfRC-_XCBGWCf48Okg5EQil6WH068r5NFZtEZ_3PsPJeeNp_N3BDbRdvNC6b_padca2sS3ja3trdLxsO3DJqW1sbav4ErRtctPuoO1ZA4VRHfiX0bNS1R5ejfNR9OPL5-uT0-Ts4uvyZHGW6EywLhGEloVgBVGYIJyDoAqlNC8yrYuiEBzlGvGQsgKMaMoEmTPAOs_TFAjkJZCj6O1Od1NbL8e6eIkzjDklIeNALHdEYdVabpxplPsjrTJyu2FdJZXrjK5BIqGDEyVyXRKKUZFrwqjOSpQRkXJGgtbxeFufh0x1KJRT9UR0etKalazsjaTBOcciCHwYBZz93YPvZGO8hrpWLdh-65vNxZzh9BEoIlxQQgdb7_5BHy7ESFUq5Gra0gaLehCVCxqUeDDIAjV7gAqjgMZo20Jpwv4k4OMkIDAd3HaV6r2Xy6vL_2C_PZ69-Dll3--xK1B1t_K27od_6acg3YHaWe8dlPdvh5EcWuuucnJoLTm2Vgh7s__u90F3vUT-AhA8HF8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811743897</pqid></control><display><type>article</type><title>Srs2 and Mus81-Mms4 Prevent Accumulation of Toxic Inter-Homolog Recombination Intermediates</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Keyamura, Kenji ; Arai, Kota ; Hishida, Takashi</creator><contributor>Lisby, Michael</contributor><creatorcontrib>Keyamura, Kenji ; Arai, Kota ; Hishida, Takashi ; Lisby, Michael</creatorcontrib><description>Homologous recombination is an evolutionally conserved mechanism that promotes genome stability through the faithful repair of double-strand breaks and single-strand gaps in DNA, and the recovery of stalled or collapsed replication forks. Saccharomyces cerevisiae ATP-dependent DNA helicase Srs2 (a member of the highly conserved UvrD family of helicases) has multiple roles in regulating homologous recombination. A mutation (srs2K41A) resulting in a helicase-dead mutant of Srs2 was found to be lethal in diploid, but not in haploid, cells. In diploid cells, Srs2K41A caused the accumulation of inter-homolog joint molecule intermediates, increased the levels of spontaneous Rad52 foci, and induced gross chromosomal rearrangements. Srs2K41A lethality and accumulation of joint molecules were suppressed by inactivating Rad51 or deleting the Rad51-interaction domain of Srs2, whereas phosphorylation and sumoylation of Srs2 and its interaction with sumoylated proliferating cell nuclear antigen (PCNA) were not required for lethality. The structure-specific complex of crossover junction endonucleases Mus81 and Mms4 was also required for viability of diploid, but not haploid, SRS2 deletion mutants (srs2Δ), and diploid srs2Δ mus81Δ mutants accumulated joint molecule intermediates. Our data suggest that Srs2 and Mus81-Mms4 have critical roles in preventing the formation of (or in resolving) toxic inter-homolog joint molecules, which could otherwise interfere with chromosome segregation and lead to genetic instability.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1006136</identifier><identifier>PMID: 27390022</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antigens ; Biology and Life Sciences ; Chromosome Segregation - genetics ; Chromosomes ; Deoxyribonucleic acid ; Diploidy ; DNA ; DNA Breaks, Double-Stranded - drug effects ; DNA damage ; DNA Helicases - genetics ; DNA Replication - genetics ; DNA-Binding Proteins - genetics ; Endonucleases - genetics ; Flap Endonucleases - genetics ; Genetic recombination ; Genomes ; Genomic Instability ; Haploidy ; Homologous Recombination - genetics ; Homology (Biology) ; Medicine and Health Sciences ; Mutation ; Observations ; Phosphorylation - genetics ; Physical Sciences ; Plasmids ; Proliferating Cell Nuclear Antigen - genetics ; Rad52 DNA Repair and Recombination Protein - genetics ; Recombination, Genetic ; Roles ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Sumoylation - genetics ; Yeast</subject><ispartof>PLoS genetics, 2016-07, Vol.12 (7), p.e1006136-e1006136</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Keyamura K, Arai K, Hishida T (2016) Srs2 and Mus81-Mms4 Prevent Accumulation of Toxic Inter-Homolog Recombination Intermediates. PLoS Genet 12(7): e1006136. doi:10.1371/journal.pgen.1006136</rights><rights>2016 Keyamura et al 2016 Keyamura et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Keyamura K, Arai K, Hishida T (2016) Srs2 and Mus81-Mms4 Prevent Accumulation of Toxic Inter-Homolog Recombination Intermediates. PLoS Genet 12(7): e1006136. doi:10.1371/journal.pgen.1006136</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c895t-934fd95d3a1301be94a024bd8ccddd970bc07137ae104259365e1cbb22e3ebfe3</citedby><cites>FETCH-LOGICAL-c895t-934fd95d3a1301be94a024bd8ccddd970bc07137ae104259365e1cbb22e3ebfe3</cites><orcidid>0000-0002-9752-6599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4936719/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4936719/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27390022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lisby, Michael</contributor><creatorcontrib>Keyamura, Kenji</creatorcontrib><creatorcontrib>Arai, Kota</creatorcontrib><creatorcontrib>Hishida, Takashi</creatorcontrib><title>Srs2 and Mus81-Mms4 Prevent Accumulation of Toxic Inter-Homolog Recombination Intermediates</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Homologous recombination is an evolutionally conserved mechanism that promotes genome stability through the faithful repair of double-strand breaks and single-strand gaps in DNA, and the recovery of stalled or collapsed replication forks. Saccharomyces cerevisiae ATP-dependent DNA helicase Srs2 (a member of the highly conserved UvrD family of helicases) has multiple roles in regulating homologous recombination. A mutation (srs2K41A) resulting in a helicase-dead mutant of Srs2 was found to be lethal in diploid, but not in haploid, cells. In diploid cells, Srs2K41A caused the accumulation of inter-homolog joint molecule intermediates, increased the levels of spontaneous Rad52 foci, and induced gross chromosomal rearrangements. Srs2K41A lethality and accumulation of joint molecules were suppressed by inactivating Rad51 or deleting the Rad51-interaction domain of Srs2, whereas phosphorylation and sumoylation of Srs2 and its interaction with sumoylated proliferating cell nuclear antigen (PCNA) were not required for lethality. The structure-specific complex of crossover junction endonucleases Mus81 and Mms4 was also required for viability of diploid, but not haploid, SRS2 deletion mutants (srs2Δ), and diploid srs2Δ mus81Δ mutants accumulated joint molecule intermediates. Our data suggest that Srs2 and Mus81-Mms4 have critical roles in preventing the formation of (or in resolving) toxic inter-homolog joint molecules, which could otherwise interfere with chromosome segregation and lead to genetic instability.</description><subject>Antigens</subject><subject>Biology and Life Sciences</subject><subject>Chromosome Segregation - genetics</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>Diploidy</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded - drug effects</subject><subject>DNA damage</subject><subject>DNA Helicases - genetics</subject><subject>DNA Replication - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Endonucleases - genetics</subject><subject>Flap Endonucleases - genetics</subject><subject>Genetic recombination</subject><subject>Genomes</subject><subject>Genomic Instability</subject><subject>Haploidy</subject><subject>Homologous Recombination - genetics</subject><subject>Homology (Biology)</subject><subject>Medicine and Health Sciences</subject><subject>Mutation</subject><subject>Observations</subject><subject>Phosphorylation - genetics</subject><subject>Physical Sciences</subject><subject>Plasmids</subject><subject>Proliferating Cell Nuclear Antigen - genetics</subject><subject>Rad52 DNA Repair and Recombination Protein - genetics</subject><subject>Recombination, Genetic</subject><subject>Roles</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Sumoylation - genetics</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk8Fu1DAQhiMEoqXwBggiISE4ZLFjex1fKq0qoCu1FLWFCwfLcSZZr5J4sZOqvD3OblptUA9FPtiyv_n9z9gTRa8xmmHC8ae17V2r6tmmgnaGEZpjMn8SHWLGSMIpok_31gfRC-_XCBGWCf48Okg5EQil6WH068r5NFZtEZ_3PsPJeeNp_N3BDbRdvNC6b_padca2sS3ja3trdLxsO3DJqW1sbav4ErRtctPuoO1ZA4VRHfiX0bNS1R5ejfNR9OPL5-uT0-Ts4uvyZHGW6EywLhGEloVgBVGYIJyDoAqlNC8yrYuiEBzlGvGQsgKMaMoEmTPAOs_TFAjkJZCj6O1Od1NbL8e6eIkzjDklIeNALHdEYdVabpxplPsjrTJyu2FdJZXrjK5BIqGDEyVyXRKKUZFrwqjOSpQRkXJGgtbxeFufh0x1KJRT9UR0etKalazsjaTBOcciCHwYBZz93YPvZGO8hrpWLdh-65vNxZzh9BEoIlxQQgdb7_5BHy7ESFUq5Gra0gaLehCVCxqUeDDIAjV7gAqjgMZo20Jpwv4k4OMkIDAd3HaV6r2Xy6vL_2C_PZ69-Dll3--xK1B1t_K27od_6acg3YHaWe8dlPdvh5EcWuuucnJoLTm2Vgh7s__u90F3vUT-AhA8HF8</recordid><startdate>20160707</startdate><enddate>20160707</enddate><creator>Keyamura, Kenji</creator><creator>Arai, Kota</creator><creator>Hishida, Takashi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9752-6599</orcidid></search><sort><creationdate>20160707</creationdate><title>Srs2 and Mus81-Mms4 Prevent Accumulation of Toxic Inter-Homolog Recombination Intermediates</title><author>Keyamura, Kenji ; Arai, Kota ; Hishida, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c895t-934fd95d3a1301be94a024bd8ccddd970bc07137ae104259365e1cbb22e3ebfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antigens</topic><topic>Biology and Life Sciences</topic><topic>Chromosome Segregation - genetics</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>Diploidy</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded - drug effects</topic><topic>DNA damage</topic><topic>DNA Helicases - genetics</topic><topic>DNA Replication - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Endonucleases - genetics</topic><topic>Flap Endonucleases - genetics</topic><topic>Genetic recombination</topic><topic>Genomes</topic><topic>Genomic Instability</topic><topic>Haploidy</topic><topic>Homologous Recombination - genetics</topic><topic>Homology (Biology)</topic><topic>Medicine and Health Sciences</topic><topic>Mutation</topic><topic>Observations</topic><topic>Phosphorylation - genetics</topic><topic>Physical Sciences</topic><topic>Plasmids</topic><topic>Proliferating Cell Nuclear Antigen - genetics</topic><topic>Rad52 DNA Repair and Recombination Protein - genetics</topic><topic>Recombination, Genetic</topic><topic>Roles</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Sumoylation - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keyamura, Kenji</creatorcontrib><creatorcontrib>Arai, Kota</creatorcontrib><creatorcontrib>Hishida, Takashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keyamura, Kenji</au><au>Arai, Kota</au><au>Hishida, Takashi</au><au>Lisby, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Srs2 and Mus81-Mms4 Prevent Accumulation of Toxic Inter-Homolog Recombination Intermediates</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2016-07-07</date><risdate>2016</risdate><volume>12</volume><issue>7</issue><spage>e1006136</spage><epage>e1006136</epage><pages>e1006136-e1006136</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Homologous recombination is an evolutionally conserved mechanism that promotes genome stability through the faithful repair of double-strand breaks and single-strand gaps in DNA, and the recovery of stalled or collapsed replication forks. Saccharomyces cerevisiae ATP-dependent DNA helicase Srs2 (a member of the highly conserved UvrD family of helicases) has multiple roles in regulating homologous recombination. A mutation (srs2K41A) resulting in a helicase-dead mutant of Srs2 was found to be lethal in diploid, but not in haploid, cells. In diploid cells, Srs2K41A caused the accumulation of inter-homolog joint molecule intermediates, increased the levels of spontaneous Rad52 foci, and induced gross chromosomal rearrangements. Srs2K41A lethality and accumulation of joint molecules were suppressed by inactivating Rad51 or deleting the Rad51-interaction domain of Srs2, whereas phosphorylation and sumoylation of Srs2 and its interaction with sumoylated proliferating cell nuclear antigen (PCNA) were not required for lethality. The structure-specific complex of crossover junction endonucleases Mus81 and Mms4 was also required for viability of diploid, but not haploid, SRS2 deletion mutants (srs2Δ), and diploid srs2Δ mus81Δ mutants accumulated joint molecule intermediates. Our data suggest that Srs2 and Mus81-Mms4 have critical roles in preventing the formation of (or in resolving) toxic inter-homolog joint molecules, which could otherwise interfere with chromosome segregation and lead to genetic instability.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27390022</pmid><doi>10.1371/journal.pgen.1006136</doi><orcidid>https://orcid.org/0000-0002-9752-6599</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2016-07, Vol.12 (7), p.e1006136-e1006136
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1811743897
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Antigens
Biology and Life Sciences
Chromosome Segregation - genetics
Chromosomes
Deoxyribonucleic acid
Diploidy
DNA
DNA Breaks, Double-Stranded - drug effects
DNA damage
DNA Helicases - genetics
DNA Replication - genetics
DNA-Binding Proteins - genetics
Endonucleases - genetics
Flap Endonucleases - genetics
Genetic recombination
Genomes
Genomic Instability
Haploidy
Homologous Recombination - genetics
Homology (Biology)
Medicine and Health Sciences
Mutation
Observations
Phosphorylation - genetics
Physical Sciences
Plasmids
Proliferating Cell Nuclear Antigen - genetics
Rad52 DNA Repair and Recombination Protein - genetics
Recombination, Genetic
Roles
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Sumoylation - genetics
Yeast
title Srs2 and Mus81-Mms4 Prevent Accumulation of Toxic Inter-Homolog Recombination Intermediates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Srs2%20and%20Mus81-Mms4%20Prevent%20Accumulation%20of%20Toxic%20Inter-Homolog%20Recombination%20Intermediates&rft.jtitle=PLoS%20genetics&rft.au=Keyamura,%20Kenji&rft.date=2016-07-07&rft.volume=12&rft.issue=7&rft.spage=e1006136&rft.epage=e1006136&rft.pages=e1006136-e1006136&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1006136&rft_dat=%3Cgale_plos_%3EA479477195%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811743897&rft_id=info:pmid/27390022&rft_galeid=A479477195&rft_doaj_id=oai_doaj_org_article_09cd3aa9bcf3410dbc354c8f08392753&rfr_iscdi=true