Coalescent Simulation and Paleodistribution Modeling for Tabebuia rosealba Do Not Support South American Dry Forest Refugia Hypothesis
Studies based on contemporary plant occurrences and pollen fossil records have proposed that the current disjunct distribution of seasonally dry tropical forests (SDTFs) across South America is the result of fragmentation of a formerly widespread and continuously distributed dry forest during the ar...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-07, Vol.11 (7), p.e0159314-e0159314 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0159314 |
---|---|
container_issue | 7 |
container_start_page | e0159314 |
container_title | PloS one |
container_volume | 11 |
creator | de Melo, Warita Alves Lima-Ribeiro, Matheus S Terribile, Levi Carina Collevatti, Rosane G |
description | Studies based on contemporary plant occurrences and pollen fossil records have proposed that the current disjunct distribution of seasonally dry tropical forests (SDTFs) across South America is the result of fragmentation of a formerly widespread and continuously distributed dry forest during the arid climatic conditions associated with the Last Glacial Maximum (LGM), which is known as the modern-day dry forest refugia hypothesis. We studied the demographic history of Tabebuia rosealba (Bignoniaceae) to understand the disjunct geographic distribution of South American SDTFs based on statistical phylogeography and ecological niche modeling (ENM). We specifically tested the dry forest refugia hypothesis; i.e., if the multiple and isolated patches of SDTFs are current climatic relicts of a widespread and continuously distributed dry forest during the LGM. We sampled 235 individuals across 18 populations in Central Brazil and analyzed the polymorphisms at chloroplast (trnS-trnG, psbA-trnH and ycf6-trnC intergenic spacers) and nuclear (ITS nrDNA) genomes. We performed coalescence simulations of alternative hypotheses under demographic expectations from two a priori biogeographic hypotheses (1. the Pleistocene Arc hypothesis and, 2. a range shift to Amazon Basin) and other two demographic expectances predicted by ENMs (3. expansion throughout the Neotropical South America, including Amazon Basin, and 4. retraction during the LGM). Phylogenetic analyses based on median-joining network showed haplotype sharing among populations with evidence of incomplete lineage sorting. Coalescent analyses showed smaller effective population sizes for T. roseoalba during the LGM compared to the present-day. Simulations and ENM also showed that its current spatial pattern of genetic diversity is most likely due to a scenario of range retraction during the LGM instead of the fragmentation from a once extensive and largely contiguous SDTF across South America, not supporting the South American dry forest refugia hypothesis. |
doi_str_mv | 10.1371/journal.pone.0159314 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1807086539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A459264378</galeid><doaj_id>oai_doaj_org_article_36675e3f0f094c08b621319678db06d6</doaj_id><sourcerecordid>A459264378</sourcerecordid><originalsourceid>FETCH-LOGICAL-a748t-2fdd97c2d96646079f3b64c1280798016c04e88f1846940bff6191771c5702aa3</originalsourceid><addsrcrecordid>eNqNk99u0zAUxiMEYmPwBggiISG4aLFjx7FvJlUdY5UGQ9vg1nISO3XlxMFOEH0BnhunzaYG7WLKha3j3_fl6PyJotcQzCHK4KeN7V0jzLy1jZwDmDIE8ZPoGDKUzEgC0NOD-1H0wvsNACmihDyPjpIMp5TR5Dj6u7TCSF_IpotvdN0b0WnbxKIp4-_hwZbad07n_S761ZbS6KaKlXXxrchl3msRO-ulMLmIz2z8zQabvm2tC6ftu3W8qKXThWjiM7eNz62TvouvpeqroLzYtrZbS6_9y-iZEsbLV-N5Ev04_3y7vJhdXn1ZLReXM5Fh2s0SVZYsK5KSEYIJyJhCOcEFTGi4UwBJAbCkVEGKCcMgV4pABrMMFmkGEiHQSfR279sa6_lYQs9h0ANKUsQCsdoTpRUb3jpdC7flVmi-C1hXceE6XRjJESFZKpECCjBcAJqTBCLISEbLHJCSBK_T8W99XstyKLITZmI6fWn0mlf2N8eMQIxRMPgwGjj7qw-l47UOvTJGNNL2Q94Q0iykDR6BggAmiA1pvfsPfbgQI1WFOeC6UTakWAymfIFTlhCMMhqo-QNU-EpZ6yKMptIhPhF8nAgC08k_XSV67_nq5vrx7NXPKfv-gF2HiezW3prd4PopiPdgEQbXO6nu-wEBHzbrrhp82Cw-blaQvTns5b3obpXQPyGCHT0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807086539</pqid></control><display><type>article</type><title>Coalescent Simulation and Paleodistribution Modeling for Tabebuia rosealba Do Not Support South American Dry Forest Refugia Hypothesis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>de Melo, Warita Alves ; Lima-Ribeiro, Matheus S ; Terribile, Levi Carina ; Collevatti, Rosane G</creator><creatorcontrib>de Melo, Warita Alves ; Lima-Ribeiro, Matheus S ; Terribile, Levi Carina ; Collevatti, Rosane G</creatorcontrib><description>Studies based on contemporary plant occurrences and pollen fossil records have proposed that the current disjunct distribution of seasonally dry tropical forests (SDTFs) across South America is the result of fragmentation of a formerly widespread and continuously distributed dry forest during the arid climatic conditions associated with the Last Glacial Maximum (LGM), which is known as the modern-day dry forest refugia hypothesis. We studied the demographic history of Tabebuia rosealba (Bignoniaceae) to understand the disjunct geographic distribution of South American SDTFs based on statistical phylogeography and ecological niche modeling (ENM). We specifically tested the dry forest refugia hypothesis; i.e., if the multiple and isolated patches of SDTFs are current climatic relicts of a widespread and continuously distributed dry forest during the LGM. We sampled 235 individuals across 18 populations in Central Brazil and analyzed the polymorphisms at chloroplast (trnS-trnG, psbA-trnH and ycf6-trnC intergenic spacers) and nuclear (ITS nrDNA) genomes. We performed coalescence simulations of alternative hypotheses under demographic expectations from two a priori biogeographic hypotheses (1. the Pleistocene Arc hypothesis and, 2. a range shift to Amazon Basin) and other two demographic expectances predicted by ENMs (3. expansion throughout the Neotropical South America, including Amazon Basin, and 4. retraction during the LGM). Phylogenetic analyses based on median-joining network showed haplotype sharing among populations with evidence of incomplete lineage sorting. Coalescent analyses showed smaller effective population sizes for T. roseoalba during the LGM compared to the present-day. Simulations and ENM also showed that its current spatial pattern of genetic diversity is most likely due to a scenario of range retraction during the LGM instead of the fragmentation from a once extensive and largely contiguous SDTF across South America, not supporting the South American dry forest refugia hypothesis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0159314</identifier><identifier>PMID: 27458982</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aridity ; Bignoniaceae ; Biodiversity ; Biological diversity ; Biology and Life Sciences ; Brazil ; Chloroplast membrane ; Climate change ; Climatic conditions ; Coalescence ; Coalescing ; Computer simulation ; Current distribution ; Demographics ; Demography ; Earth Sciences ; Ecological niches ; Ecology ; Ecology and Environmental Sciences ; Ecosystems ; Forest refugia ; Forests ; Fossils ; Fragmentation ; Genetic diversity ; Genetic Variation ; Genetics, Population ; Genomes ; Geographical distribution ; Geography ; Grasslands ; Hypotheses ; Last Glacial Maximum ; Modelling ; Models, Statistical ; Models, Theoretical ; Niches (Ecology) ; People and Places ; Phylogeny ; Phylogeography ; Physiological aspects ; Pleistocene ; Pollen ; Population (statistical) ; Refugia ; Refugium ; River basins ; Seasonal distribution ; Seasons ; Sequence Analysis, DNA ; Spatial Analysis ; Spatial discrimination ; Spatial distribution ; Tabebuia ; Tabebuia - classification ; Tabebuia - genetics ; Trends ; Tropical Climate ; Tropical forests</subject><ispartof>PloS one, 2016-07, Vol.11 (7), p.e0159314-e0159314</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 de Melo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 de Melo et al 2016 de Melo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a748t-2fdd97c2d96646079f3b64c1280798016c04e88f1846940bff6191771c5702aa3</citedby><cites>FETCH-LOGICAL-a748t-2fdd97c2d96646079f3b64c1280798016c04e88f1846940bff6191771c5702aa3</cites><orcidid>0000-0002-3733-7059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961443/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961443/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27458982$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Melo, Warita Alves</creatorcontrib><creatorcontrib>Lima-Ribeiro, Matheus S</creatorcontrib><creatorcontrib>Terribile, Levi Carina</creatorcontrib><creatorcontrib>Collevatti, Rosane G</creatorcontrib><title>Coalescent Simulation and Paleodistribution Modeling for Tabebuia rosealba Do Not Support South American Dry Forest Refugia Hypothesis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Studies based on contemporary plant occurrences and pollen fossil records have proposed that the current disjunct distribution of seasonally dry tropical forests (SDTFs) across South America is the result of fragmentation of a formerly widespread and continuously distributed dry forest during the arid climatic conditions associated with the Last Glacial Maximum (LGM), which is known as the modern-day dry forest refugia hypothesis. We studied the demographic history of Tabebuia rosealba (Bignoniaceae) to understand the disjunct geographic distribution of South American SDTFs based on statistical phylogeography and ecological niche modeling (ENM). We specifically tested the dry forest refugia hypothesis; i.e., if the multiple and isolated patches of SDTFs are current climatic relicts of a widespread and continuously distributed dry forest during the LGM. We sampled 235 individuals across 18 populations in Central Brazil and analyzed the polymorphisms at chloroplast (trnS-trnG, psbA-trnH and ycf6-trnC intergenic spacers) and nuclear (ITS nrDNA) genomes. We performed coalescence simulations of alternative hypotheses under demographic expectations from two a priori biogeographic hypotheses (1. the Pleistocene Arc hypothesis and, 2. a range shift to Amazon Basin) and other two demographic expectances predicted by ENMs (3. expansion throughout the Neotropical South America, including Amazon Basin, and 4. retraction during the LGM). Phylogenetic analyses based on median-joining network showed haplotype sharing among populations with evidence of incomplete lineage sorting. Coalescent analyses showed smaller effective population sizes for T. roseoalba during the LGM compared to the present-day. Simulations and ENM also showed that its current spatial pattern of genetic diversity is most likely due to a scenario of range retraction during the LGM instead of the fragmentation from a once extensive and largely contiguous SDTF across South America, not supporting the South American dry forest refugia hypothesis.</description><subject>Aridity</subject><subject>Bignoniaceae</subject><subject>Biodiversity</subject><subject>Biological diversity</subject><subject>Biology and Life Sciences</subject><subject>Brazil</subject><subject>Chloroplast membrane</subject><subject>Climate change</subject><subject>Climatic conditions</subject><subject>Coalescence</subject><subject>Coalescing</subject><subject>Computer simulation</subject><subject>Current distribution</subject><subject>Demographics</subject><subject>Demography</subject><subject>Earth Sciences</subject><subject>Ecological niches</subject><subject>Ecology</subject><subject>Ecology and Environmental Sciences</subject><subject>Ecosystems</subject><subject>Forest refugia</subject><subject>Forests</subject><subject>Fossils</subject><subject>Fragmentation</subject><subject>Genetic diversity</subject><subject>Genetic Variation</subject><subject>Genetics, Population</subject><subject>Genomes</subject><subject>Geographical distribution</subject><subject>Geography</subject><subject>Grasslands</subject><subject>Hypotheses</subject><subject>Last Glacial Maximum</subject><subject>Modelling</subject><subject>Models, Statistical</subject><subject>Models, Theoretical</subject><subject>Niches (Ecology)</subject><subject>People and Places</subject><subject>Phylogeny</subject><subject>Phylogeography</subject><subject>Physiological aspects</subject><subject>Pleistocene</subject><subject>Pollen</subject><subject>Population (statistical)</subject><subject>Refugia</subject><subject>Refugium</subject><subject>River basins</subject><subject>Seasonal distribution</subject><subject>Seasons</subject><subject>Sequence Analysis, DNA</subject><subject>Spatial Analysis</subject><subject>Spatial discrimination</subject><subject>Spatial distribution</subject><subject>Tabebuia</subject><subject>Tabebuia - classification</subject><subject>Tabebuia - genetics</subject><subject>Trends</subject><subject>Tropical Climate</subject><subject>Tropical forests</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99u0zAUxiMEYmPwBggiISG4aLFjx7FvJlUdY5UGQ9vg1nISO3XlxMFOEH0BnhunzaYG7WLKha3j3_fl6PyJotcQzCHK4KeN7V0jzLy1jZwDmDIE8ZPoGDKUzEgC0NOD-1H0wvsNACmihDyPjpIMp5TR5Dj6u7TCSF_IpotvdN0b0WnbxKIp4-_hwZbad07n_S761ZbS6KaKlXXxrchl3msRO-ulMLmIz2z8zQabvm2tC6ftu3W8qKXThWjiM7eNz62TvouvpeqroLzYtrZbS6_9y-iZEsbLV-N5Ev04_3y7vJhdXn1ZLReXM5Fh2s0SVZYsK5KSEYIJyJhCOcEFTGi4UwBJAbCkVEGKCcMgV4pABrMMFmkGEiHQSfR279sa6_lYQs9h0ANKUsQCsdoTpRUb3jpdC7flVmi-C1hXceE6XRjJESFZKpECCjBcAJqTBCLISEbLHJCSBK_T8W99XstyKLITZmI6fWn0mlf2N8eMQIxRMPgwGjj7qw-l47UOvTJGNNL2Q94Q0iykDR6BggAmiA1pvfsPfbgQI1WFOeC6UTakWAymfIFTlhCMMhqo-QNU-EpZ6yKMptIhPhF8nAgC08k_XSV67_nq5vrx7NXPKfv-gF2HiezW3prd4PopiPdgEQbXO6nu-wEBHzbrrhp82Cw-blaQvTns5b3obpXQPyGCHT0</recordid><startdate>20160726</startdate><enddate>20160726</enddate><creator>de Melo, Warita Alves</creator><creator>Lima-Ribeiro, Matheus S</creator><creator>Terribile, Levi Carina</creator><creator>Collevatti, Rosane G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3733-7059</orcidid></search><sort><creationdate>20160726</creationdate><title>Coalescent Simulation and Paleodistribution Modeling for Tabebuia rosealba Do Not Support South American Dry Forest Refugia Hypothesis</title><author>de Melo, Warita Alves ; Lima-Ribeiro, Matheus S ; Terribile, Levi Carina ; Collevatti, Rosane G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a748t-2fdd97c2d96646079f3b64c1280798016c04e88f1846940bff6191771c5702aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aridity</topic><topic>Bignoniaceae</topic><topic>Biodiversity</topic><topic>Biological diversity</topic><topic>Biology and Life Sciences</topic><topic>Brazil</topic><topic>Chloroplast membrane</topic><topic>Climate change</topic><topic>Climatic conditions</topic><topic>Coalescence</topic><topic>Coalescing</topic><topic>Computer simulation</topic><topic>Current distribution</topic><topic>Demographics</topic><topic>Demography</topic><topic>Earth Sciences</topic><topic>Ecological niches</topic><topic>Ecology</topic><topic>Ecology and Environmental Sciences</topic><topic>Ecosystems</topic><topic>Forest refugia</topic><topic>Forests</topic><topic>Fossils</topic><topic>Fragmentation</topic><topic>Genetic diversity</topic><topic>Genetic Variation</topic><topic>Genetics, Population</topic><topic>Genomes</topic><topic>Geographical distribution</topic><topic>Geography</topic><topic>Grasslands</topic><topic>Hypotheses</topic><topic>Last Glacial Maximum</topic><topic>Modelling</topic><topic>Models, Statistical</topic><topic>Models, Theoretical</topic><topic>Niches (Ecology)</topic><topic>People and Places</topic><topic>Phylogeny</topic><topic>Phylogeography</topic><topic>Physiological aspects</topic><topic>Pleistocene</topic><topic>Pollen</topic><topic>Population (statistical)</topic><topic>Refugia</topic><topic>Refugium</topic><topic>River basins</topic><topic>Seasonal distribution</topic><topic>Seasons</topic><topic>Sequence Analysis, DNA</topic><topic>Spatial Analysis</topic><topic>Spatial discrimination</topic><topic>Spatial distribution</topic><topic>Tabebuia</topic><topic>Tabebuia - classification</topic><topic>Tabebuia - genetics</topic><topic>Trends</topic><topic>Tropical Climate</topic><topic>Tropical forests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Melo, Warita Alves</creatorcontrib><creatorcontrib>Lima-Ribeiro, Matheus S</creatorcontrib><creatorcontrib>Terribile, Levi Carina</creatorcontrib><creatorcontrib>Collevatti, Rosane G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Melo, Warita Alves</au><au>Lima-Ribeiro, Matheus S</au><au>Terribile, Levi Carina</au><au>Collevatti, Rosane G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coalescent Simulation and Paleodistribution Modeling for Tabebuia rosealba Do Not Support South American Dry Forest Refugia Hypothesis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-07-26</date><risdate>2016</risdate><volume>11</volume><issue>7</issue><spage>e0159314</spage><epage>e0159314</epage><pages>e0159314-e0159314</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Studies based on contemporary plant occurrences and pollen fossil records have proposed that the current disjunct distribution of seasonally dry tropical forests (SDTFs) across South America is the result of fragmentation of a formerly widespread and continuously distributed dry forest during the arid climatic conditions associated with the Last Glacial Maximum (LGM), which is known as the modern-day dry forest refugia hypothesis. We studied the demographic history of Tabebuia rosealba (Bignoniaceae) to understand the disjunct geographic distribution of South American SDTFs based on statistical phylogeography and ecological niche modeling (ENM). We specifically tested the dry forest refugia hypothesis; i.e., if the multiple and isolated patches of SDTFs are current climatic relicts of a widespread and continuously distributed dry forest during the LGM. We sampled 235 individuals across 18 populations in Central Brazil and analyzed the polymorphisms at chloroplast (trnS-trnG, psbA-trnH and ycf6-trnC intergenic spacers) and nuclear (ITS nrDNA) genomes. We performed coalescence simulations of alternative hypotheses under demographic expectations from two a priori biogeographic hypotheses (1. the Pleistocene Arc hypothesis and, 2. a range shift to Amazon Basin) and other two demographic expectances predicted by ENMs (3. expansion throughout the Neotropical South America, including Amazon Basin, and 4. retraction during the LGM). Phylogenetic analyses based on median-joining network showed haplotype sharing among populations with evidence of incomplete lineage sorting. Coalescent analyses showed smaller effective population sizes for T. roseoalba during the LGM compared to the present-day. Simulations and ENM also showed that its current spatial pattern of genetic diversity is most likely due to a scenario of range retraction during the LGM instead of the fragmentation from a once extensive and largely contiguous SDTF across South America, not supporting the South American dry forest refugia hypothesis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27458982</pmid><doi>10.1371/journal.pone.0159314</doi><tpages>e0159314</tpages><orcidid>https://orcid.org/0000-0002-3733-7059</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-07, Vol.11 (7), p.e0159314-e0159314 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1807086539 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Aridity Bignoniaceae Biodiversity Biological diversity Biology and Life Sciences Brazil Chloroplast membrane Climate change Climatic conditions Coalescence Coalescing Computer simulation Current distribution Demographics Demography Earth Sciences Ecological niches Ecology Ecology and Environmental Sciences Ecosystems Forest refugia Forests Fossils Fragmentation Genetic diversity Genetic Variation Genetics, Population Genomes Geographical distribution Geography Grasslands Hypotheses Last Glacial Maximum Modelling Models, Statistical Models, Theoretical Niches (Ecology) People and Places Phylogeny Phylogeography Physiological aspects Pleistocene Pollen Population (statistical) Refugia Refugium River basins Seasonal distribution Seasons Sequence Analysis, DNA Spatial Analysis Spatial discrimination Spatial distribution Tabebuia Tabebuia - classification Tabebuia - genetics Trends Tropical Climate Tropical forests |
title | Coalescent Simulation and Paleodistribution Modeling for Tabebuia rosealba Do Not Support South American Dry Forest Refugia Hypothesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coalescent%20Simulation%20and%20Paleodistribution%20Modeling%20for%20Tabebuia%20rosealba%20Do%20Not%20Support%20South%20American%20Dry%20Forest%20Refugia%20Hypothesis&rft.jtitle=PloS%20one&rft.au=de%20Melo,%20Warita%20Alves&rft.date=2016-07-26&rft.volume=11&rft.issue=7&rft.spage=e0159314&rft.epage=e0159314&rft.pages=e0159314-e0159314&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0159314&rft_dat=%3Cgale_plos_%3EA459264378%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1807086539&rft_id=info:pmid/27458982&rft_galeid=A459264378&rft_doaj_id=oai_doaj_org_article_36675e3f0f094c08b621319678db06d6&rfr_iscdi=true |