Diffusive Silicon Nanopore Membranes for Hemodialysis Applications

Hemodialysis using hollow-fiber membranes provides life-sustaining treatment for nearly 2 million patients worldwide with end stage renal disease (ESRD). However, patients on hemodialysis have worse long-term outcomes compared to kidney transplant or other chronic illnesses. Additionally, the underl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-07, Vol.11 (7), p.e0159526
Hauptverfasser: Kim, Steven, Feinberg, Benjamin, Kant, Rishi, Chui, Benjamin, Goldman, Ken, Park, Jaehyun, Moses, Willieford, Blaha, Charles, Iqbal, Zohora, Chow, Clarence, Wright, Nathan, Fissell, William H, Zydney, Andrew, Roy, Shuvo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page e0159526
container_title PloS one
container_volume 11
creator Kim, Steven
Feinberg, Benjamin
Kant, Rishi
Chui, Benjamin
Goldman, Ken
Park, Jaehyun
Moses, Willieford
Blaha, Charles
Iqbal, Zohora
Chow, Clarence
Wright, Nathan
Fissell, William H
Zydney, Andrew
Roy, Shuvo
description Hemodialysis using hollow-fiber membranes provides life-sustaining treatment for nearly 2 million patients worldwide with end stage renal disease (ESRD). However, patients on hemodialysis have worse long-term outcomes compared to kidney transplant or other chronic illnesses. Additionally, the underlying membrane technology of polymer hollow-fiber membranes has not fundamentally changed in over four decades. Therefore, we have proposed a fundamentally different approach using microelectromechanical systems (MEMS) fabrication techniques to create thin-flat sheets of silicon-based membranes for implantable or portable hemodialysis applications. The silicon nanopore membranes (SNM) have biomimetic slit-pore geometry and uniform pores size distribution that allow for exceptional permeability and selectivity. A quantitative diffusion model identified structural limits to diffusive solute transport and motivated a new microfabrication technique to create SNM with enhanced diffusive transport. We performed in vitro testing and extracorporeal testing in pigs on prototype membranes with an effective surface area of 2.52 cm2 and 2.02 cm2, respectively. The diffusive clearance was a two-fold improvement in with the new microfabrication technique and was consistent with our mathematical model. These results establish the feasibility of using SNM for hemodialysis applications with additional scale-up.
doi_str_mv 10.1371/journal.pone.0159526
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1805757206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A458869451</galeid><doaj_id>oai_doaj_org_article_08c7dfe9101e486091b9624dd9065613</doaj_id><sourcerecordid>A458869451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-c851824adad9a444020df96677e4421405f55db24f2524e6985dfe6fb3a592743</originalsourceid><addsrcrecordid>eNqNkl2P1CAUhhujcT_0HxhtYrLRixmBAoUbk3H92ElWN3HVW8IUmGFCS4V24_576Ux3MzV7IVxA4Dnv4RzeLHsBwRwWJXy39X1opJu3vtFzAAkniD7KjiEv0IwiUDw-2B9lJzFuASAFo_RpdoRKXDBWsuPsw0drTB_tjc6vrbOVb_JvsvGtDzr_qutVkI2OufEhv9C1V1a622hjvmjbBMvO-iY-y54Y6aJ-Pq6n2c_Pn36cX8wur74szxeXs6pEpJtVjECGsFRScYkxBggowyktS40xghgQQ4haIWwQQVhTzogymppVIQkfHnyavdrrts5HMZYfBWSAlKREgCZiuSeUl1vRBlvLcCu8tGJ34MNayNDZymkBWFUmeQ4B1JhRwOGKU4SV4oASCouk9X7M1q9qrSrddEG6iej0prEbsfY3AnOCKYZJ4M0oEPzvXsdO1DZW2rnUUd8P74aQpbFDX_-DPlzdSK1lKsA2xqe81SAqFpgwRjkmg9b8ASpNpevhe7Wx6XwS8HYSkJhO_-nWso9RLK-__z979WvKnh2wGy1dt4ne9TvPTEG8B6vgYwza3DcZAjFY_a4bYrC6GK2ewl4eftB90J23i7_ELPb-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1805757206</pqid></control><display><type>article</type><title>Diffusive Silicon Nanopore Membranes for Hemodialysis Applications</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Steven ; Feinberg, Benjamin ; Kant, Rishi ; Chui, Benjamin ; Goldman, Ken ; Park, Jaehyun ; Moses, Willieford ; Blaha, Charles ; Iqbal, Zohora ; Chow, Clarence ; Wright, Nathan ; Fissell, William H ; Zydney, Andrew ; Roy, Shuvo</creator><contributor>Joles, Jaap A.</contributor><creatorcontrib>Kim, Steven ; Feinberg, Benjamin ; Kant, Rishi ; Chui, Benjamin ; Goldman, Ken ; Park, Jaehyun ; Moses, Willieford ; Blaha, Charles ; Iqbal, Zohora ; Chow, Clarence ; Wright, Nathan ; Fissell, William H ; Zydney, Andrew ; Roy, Shuvo ; Joles, Jaap A.</creatorcontrib><description>Hemodialysis using hollow-fiber membranes provides life-sustaining treatment for nearly 2 million patients worldwide with end stage renal disease (ESRD). However, patients on hemodialysis have worse long-term outcomes compared to kidney transplant or other chronic illnesses. Additionally, the underlying membrane technology of polymer hollow-fiber membranes has not fundamentally changed in over four decades. Therefore, we have proposed a fundamentally different approach using microelectromechanical systems (MEMS) fabrication techniques to create thin-flat sheets of silicon-based membranes for implantable or portable hemodialysis applications. The silicon nanopore membranes (SNM) have biomimetic slit-pore geometry and uniform pores size distribution that allow for exceptional permeability and selectivity. A quantitative diffusion model identified structural limits to diffusive solute transport and motivated a new microfabrication technique to create SNM with enhanced diffusive transport. We performed in vitro testing and extracorporeal testing in pigs on prototype membranes with an effective surface area of 2.52 cm2 and 2.02 cm2, respectively. The diffusive clearance was a two-fold improvement in with the new microfabrication technique and was consistent with our mathematical model. These results establish the feasibility of using SNM for hemodialysis applications with additional scale-up.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0159526</identifier><identifier>PMID: 27438878</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Addition polymerization ; Analysis ; Animals ; Biology and Life Sciences ; Biomimetics ; Blood platelets ; Care and treatment ; Chronic illnesses ; Chronic kidney failure ; Diagnosis ; Dialysis ; Diffusion ; Diffusion models ; Fabrication ; Feasibility studies ; Geometry ; Health aspects ; Hemodialysis ; Hollow fiber membranes ; Humans ; Illnesses ; In vitro methods and tests ; Innovations ; Kidney Failure, Chronic - physiopathology ; Kidney Failure, Chronic - therapy ; Kidney transplantation ; Mathematical models ; Mathematics ; Medicine and Health Sciences ; Membrane filters ; Membrane permeability ; Membranes ; Membranes, Artificial ; Microelectromechanical systems ; Mortality ; Nanopores ; Nanostructured materials ; Oxidative stress ; Patient outcomes ; Patients ; Peritoneal dialysis ; Permeability ; Physical Sciences ; Polymers ; Polymers - chemistry ; Polymers - therapeutic use ; Porosity ; Properties ; Renal Dialysis - methods ; Silicon ; Silicon - chemistry ; Silicon - therapeutic use ; Size distribution ; Solute transport ; Solutions - chemistry ; Swine ; Transplants &amp; implants ; Transport</subject><ispartof>PloS one, 2016-07, Vol.11 (7), p.e0159526</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Kim et al 2016 Kim et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-c851824adad9a444020df96677e4421405f55db24f2524e6985dfe6fb3a592743</citedby><cites>FETCH-LOGICAL-c725t-c851824adad9a444020df96677e4421405f55db24f2524e6985dfe6fb3a592743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4954641/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4954641/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27438878$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Joles, Jaap A.</contributor><creatorcontrib>Kim, Steven</creatorcontrib><creatorcontrib>Feinberg, Benjamin</creatorcontrib><creatorcontrib>Kant, Rishi</creatorcontrib><creatorcontrib>Chui, Benjamin</creatorcontrib><creatorcontrib>Goldman, Ken</creatorcontrib><creatorcontrib>Park, Jaehyun</creatorcontrib><creatorcontrib>Moses, Willieford</creatorcontrib><creatorcontrib>Blaha, Charles</creatorcontrib><creatorcontrib>Iqbal, Zohora</creatorcontrib><creatorcontrib>Chow, Clarence</creatorcontrib><creatorcontrib>Wright, Nathan</creatorcontrib><creatorcontrib>Fissell, William H</creatorcontrib><creatorcontrib>Zydney, Andrew</creatorcontrib><creatorcontrib>Roy, Shuvo</creatorcontrib><title>Diffusive Silicon Nanopore Membranes for Hemodialysis Applications</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Hemodialysis using hollow-fiber membranes provides life-sustaining treatment for nearly 2 million patients worldwide with end stage renal disease (ESRD). However, patients on hemodialysis have worse long-term outcomes compared to kidney transplant or other chronic illnesses. Additionally, the underlying membrane technology of polymer hollow-fiber membranes has not fundamentally changed in over four decades. Therefore, we have proposed a fundamentally different approach using microelectromechanical systems (MEMS) fabrication techniques to create thin-flat sheets of silicon-based membranes for implantable or portable hemodialysis applications. The silicon nanopore membranes (SNM) have biomimetic slit-pore geometry and uniform pores size distribution that allow for exceptional permeability and selectivity. A quantitative diffusion model identified structural limits to diffusive solute transport and motivated a new microfabrication technique to create SNM with enhanced diffusive transport. We performed in vitro testing and extracorporeal testing in pigs on prototype membranes with an effective surface area of 2.52 cm2 and 2.02 cm2, respectively. The diffusive clearance was a two-fold improvement in with the new microfabrication technique and was consistent with our mathematical model. These results establish the feasibility of using SNM for hemodialysis applications with additional scale-up.</description><subject>Addition polymerization</subject><subject>Analysis</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Biomimetics</subject><subject>Blood platelets</subject><subject>Care and treatment</subject><subject>Chronic illnesses</subject><subject>Chronic kidney failure</subject><subject>Diagnosis</subject><subject>Dialysis</subject><subject>Diffusion</subject><subject>Diffusion models</subject><subject>Fabrication</subject><subject>Feasibility studies</subject><subject>Geometry</subject><subject>Health aspects</subject><subject>Hemodialysis</subject><subject>Hollow fiber membranes</subject><subject>Humans</subject><subject>Illnesses</subject><subject>In vitro methods and tests</subject><subject>Innovations</subject><subject>Kidney Failure, Chronic - physiopathology</subject><subject>Kidney Failure, Chronic - therapy</subject><subject>Kidney transplantation</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Medicine and Health Sciences</subject><subject>Membrane filters</subject><subject>Membrane permeability</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Microelectromechanical systems</subject><subject>Mortality</subject><subject>Nanopores</subject><subject>Nanostructured materials</subject><subject>Oxidative stress</subject><subject>Patient outcomes</subject><subject>Patients</subject><subject>Peritoneal dialysis</subject><subject>Permeability</subject><subject>Physical Sciences</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Polymers - therapeutic use</subject><subject>Porosity</subject><subject>Properties</subject><subject>Renal Dialysis - methods</subject><subject>Silicon</subject><subject>Silicon - chemistry</subject><subject>Silicon - therapeutic use</subject><subject>Size distribution</subject><subject>Solute transport</subject><subject>Solutions - chemistry</subject><subject>Swine</subject><subject>Transplants &amp; implants</subject><subject>Transport</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2P1CAUhhujcT_0HxhtYrLRixmBAoUbk3H92ElWN3HVW8IUmGFCS4V24_576Ux3MzV7IVxA4Dnv4RzeLHsBwRwWJXy39X1opJu3vtFzAAkniD7KjiEv0IwiUDw-2B9lJzFuASAFo_RpdoRKXDBWsuPsw0drTB_tjc6vrbOVb_JvsvGtDzr_qutVkI2OufEhv9C1V1a622hjvmjbBMvO-iY-y54Y6aJ-Pq6n2c_Pn36cX8wur74szxeXs6pEpJtVjECGsFRScYkxBggowyktS40xghgQQ4haIWwQQVhTzogymppVIQkfHnyavdrrts5HMZYfBWSAlKREgCZiuSeUl1vRBlvLcCu8tGJ34MNayNDZymkBWFUmeQ4B1JhRwOGKU4SV4oASCouk9X7M1q9qrSrddEG6iej0prEbsfY3AnOCKYZJ4M0oEPzvXsdO1DZW2rnUUd8P74aQpbFDX_-DPlzdSK1lKsA2xqe81SAqFpgwRjkmg9b8ASpNpevhe7Wx6XwS8HYSkJhO_-nWso9RLK-__z979WvKnh2wGy1dt4ne9TvPTEG8B6vgYwza3DcZAjFY_a4bYrC6GK2ewl4eftB90J23i7_ELPb-</recordid><startdate>20160720</startdate><enddate>20160720</enddate><creator>Kim, Steven</creator><creator>Feinberg, Benjamin</creator><creator>Kant, Rishi</creator><creator>Chui, Benjamin</creator><creator>Goldman, Ken</creator><creator>Park, Jaehyun</creator><creator>Moses, Willieford</creator><creator>Blaha, Charles</creator><creator>Iqbal, Zohora</creator><creator>Chow, Clarence</creator><creator>Wright, Nathan</creator><creator>Fissell, William H</creator><creator>Zydney, Andrew</creator><creator>Roy, Shuvo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160720</creationdate><title>Diffusive Silicon Nanopore Membranes for Hemodialysis Applications</title><author>Kim, Steven ; Feinberg, Benjamin ; Kant, Rishi ; Chui, Benjamin ; Goldman, Ken ; Park, Jaehyun ; Moses, Willieford ; Blaha, Charles ; Iqbal, Zohora ; Chow, Clarence ; Wright, Nathan ; Fissell, William H ; Zydney, Andrew ; Roy, Shuvo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-c851824adad9a444020df96677e4421405f55db24f2524e6985dfe6fb3a592743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Addition polymerization</topic><topic>Analysis</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Biomimetics</topic><topic>Blood platelets</topic><topic>Care and treatment</topic><topic>Chronic illnesses</topic><topic>Chronic kidney failure</topic><topic>Diagnosis</topic><topic>Dialysis</topic><topic>Diffusion</topic><topic>Diffusion models</topic><topic>Fabrication</topic><topic>Feasibility studies</topic><topic>Geometry</topic><topic>Health aspects</topic><topic>Hemodialysis</topic><topic>Hollow fiber membranes</topic><topic>Humans</topic><topic>Illnesses</topic><topic>In vitro methods and tests</topic><topic>Innovations</topic><topic>Kidney Failure, Chronic - physiopathology</topic><topic>Kidney Failure, Chronic - therapy</topic><topic>Kidney transplantation</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Medicine and Health Sciences</topic><topic>Membrane filters</topic><topic>Membrane permeability</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Microelectromechanical systems</topic><topic>Mortality</topic><topic>Nanopores</topic><topic>Nanostructured materials</topic><topic>Oxidative stress</topic><topic>Patient outcomes</topic><topic>Patients</topic><topic>Peritoneal dialysis</topic><topic>Permeability</topic><topic>Physical Sciences</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Polymers - therapeutic use</topic><topic>Porosity</topic><topic>Properties</topic><topic>Renal Dialysis - methods</topic><topic>Silicon</topic><topic>Silicon - chemistry</topic><topic>Silicon - therapeutic use</topic><topic>Size distribution</topic><topic>Solute transport</topic><topic>Solutions - chemistry</topic><topic>Swine</topic><topic>Transplants &amp; implants</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Steven</creatorcontrib><creatorcontrib>Feinberg, Benjamin</creatorcontrib><creatorcontrib>Kant, Rishi</creatorcontrib><creatorcontrib>Chui, Benjamin</creatorcontrib><creatorcontrib>Goldman, Ken</creatorcontrib><creatorcontrib>Park, Jaehyun</creatorcontrib><creatorcontrib>Moses, Willieford</creatorcontrib><creatorcontrib>Blaha, Charles</creatorcontrib><creatorcontrib>Iqbal, Zohora</creatorcontrib><creatorcontrib>Chow, Clarence</creatorcontrib><creatorcontrib>Wright, Nathan</creatorcontrib><creatorcontrib>Fissell, William H</creatorcontrib><creatorcontrib>Zydney, Andrew</creatorcontrib><creatorcontrib>Roy, Shuvo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Steven</au><au>Feinberg, Benjamin</au><au>Kant, Rishi</au><au>Chui, Benjamin</au><au>Goldman, Ken</au><au>Park, Jaehyun</au><au>Moses, Willieford</au><au>Blaha, Charles</au><au>Iqbal, Zohora</au><au>Chow, Clarence</au><au>Wright, Nathan</au><au>Fissell, William H</au><au>Zydney, Andrew</au><au>Roy, Shuvo</au><au>Joles, Jaap A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusive Silicon Nanopore Membranes for Hemodialysis Applications</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-07-20</date><risdate>2016</risdate><volume>11</volume><issue>7</issue><spage>e0159526</spage><pages>e0159526-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Hemodialysis using hollow-fiber membranes provides life-sustaining treatment for nearly 2 million patients worldwide with end stage renal disease (ESRD). However, patients on hemodialysis have worse long-term outcomes compared to kidney transplant or other chronic illnesses. Additionally, the underlying membrane technology of polymer hollow-fiber membranes has not fundamentally changed in over four decades. Therefore, we have proposed a fundamentally different approach using microelectromechanical systems (MEMS) fabrication techniques to create thin-flat sheets of silicon-based membranes for implantable or portable hemodialysis applications. The silicon nanopore membranes (SNM) have biomimetic slit-pore geometry and uniform pores size distribution that allow for exceptional permeability and selectivity. A quantitative diffusion model identified structural limits to diffusive solute transport and motivated a new microfabrication technique to create SNM with enhanced diffusive transport. We performed in vitro testing and extracorporeal testing in pigs on prototype membranes with an effective surface area of 2.52 cm2 and 2.02 cm2, respectively. The diffusive clearance was a two-fold improvement in with the new microfabrication technique and was consistent with our mathematical model. These results establish the feasibility of using SNM for hemodialysis applications with additional scale-up.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27438878</pmid><doi>10.1371/journal.pone.0159526</doi><tpages>e0159526</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-07, Vol.11 (7), p.e0159526
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1805757206
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Addition polymerization
Analysis
Animals
Biology and Life Sciences
Biomimetics
Blood platelets
Care and treatment
Chronic illnesses
Chronic kidney failure
Diagnosis
Dialysis
Diffusion
Diffusion models
Fabrication
Feasibility studies
Geometry
Health aspects
Hemodialysis
Hollow fiber membranes
Humans
Illnesses
In vitro methods and tests
Innovations
Kidney Failure, Chronic - physiopathology
Kidney Failure, Chronic - therapy
Kidney transplantation
Mathematical models
Mathematics
Medicine and Health Sciences
Membrane filters
Membrane permeability
Membranes
Membranes, Artificial
Microelectromechanical systems
Mortality
Nanopores
Nanostructured materials
Oxidative stress
Patient outcomes
Patients
Peritoneal dialysis
Permeability
Physical Sciences
Polymers
Polymers - chemistry
Polymers - therapeutic use
Porosity
Properties
Renal Dialysis - methods
Silicon
Silicon - chemistry
Silicon - therapeutic use
Size distribution
Solute transport
Solutions - chemistry
Swine
Transplants & implants
Transport
title Diffusive Silicon Nanopore Membranes for Hemodialysis Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusive%20Silicon%20Nanopore%20Membranes%20for%20Hemodialysis%20Applications&rft.jtitle=PloS%20one&rft.au=Kim,%20Steven&rft.date=2016-07-20&rft.volume=11&rft.issue=7&rft.spage=e0159526&rft.pages=e0159526-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0159526&rft_dat=%3Cgale_plos_%3EA458869451%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1805757206&rft_id=info:pmid/27438878&rft_galeid=A458869451&rft_doaj_id=oai_doaj_org_article_08c7dfe9101e486091b9624dd9065613&rfr_iscdi=true