Single- and Bayesian Multi-Marker Genome-Wide Association for Haematological Parameters in Pigs
Haematological traits are important traits that show associations with immune and metabolic status, as well as diseases in humans and animals. Mapping genome regions that affect the blood cell traits can contribute to the identification of genomic features useable as biomarkers for immune, disease a...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-07, Vol.11 (7), p.e0159212-e0159212 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0159212 |
---|---|
container_issue | 7 |
container_start_page | e0159212 |
container_title | PloS one |
container_volume | 11 |
creator | Ponsuksili, Siriluck Reyer, Henry Trakooljul, Nares Murani, Eduard Wimmers, Klaus |
description | Haematological traits are important traits that show associations with immune and metabolic status, as well as diseases in humans and animals. Mapping genome regions that affect the blood cell traits can contribute to the identification of genomic features useable as biomarkers for immune, disease and metabolic status. A genome-wide association study (GWAS) was conducted using PorcineSNP60 BeadChips. Single-marker and Bayesian multi-marker approaches were integrated to identify genomic regions and corresponding genes overlapping for both methods. GWAS was performed for haematological traits of 591 German Landrace pig. Heritability estimates for haematological traits were medium to high. In total 252 single SNPs associated with 12 haematological traits were identified (NegLog10 of p-value > 5). The Bayesian multi-marker approach revealed 102 QTL regions across the genome, indicated by 1-Mb windows with contribution to additive genetic variance above 0.5%. The integration of both methods resulted in 24 overlapping QTL regions. This study identified overlapping QTL regions from single- and multi-marker approaches for haematological traits. Identifying candidate genes that affect blood cell traits provides the first step towards the understanding of the molecular basis of haematological phenotypes. |
doi_str_mv | 10.1371/journal.pone.0159212 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1805485556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A458747562</galeid><doaj_id>oai_doaj_org_article_3771ea21fc944fd2ad261d3ce8d0bc0e</doaj_id><sourcerecordid>A458747562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-789c127a162faf96f60bb9a3787218fab3e4f39c38a22812377e9d33efa793153</originalsourceid><addsrcrecordid>eNqNk0tv1DAQxyMEoqXwDRBEQkJwyOJHHCcXpKWCtlKrVpTH0Zp1xqmLExc7QfTb4-1uq13UQ-WDrfFv_h7PI8teUjKjXNIPl34KA7jZlR9wRqhoGGWPsl3acFZUjPDHG-ed7FmMl4QIXlfV02yHyZKXhLPdTJ3boXNY5DC0-Se4xmhhyE8mN9riBMIvDPkBDr7H4qdtMZ_H6LWF0fohNz7kh4A9jN75zmpw-RkE6HHEEHM75Ge2i8-zJwZcxBfrfS_7_uXzt_3D4vj04Gh_flxoycRYyLrRlEmgFTNgmspUZLFogMtaMlobWHAsDW80r4GxmjIuJTYt52hANpwKvpe9XuleOR_VOjdR0ZqIshZCVIk4WhGth0t1FWwP4Vp5sOrG4EOnIIxWO1RJnSIwanRTlqZl0LKKtlxj3ZKFJpi0Pq5fmxY9thqHMYDbEt2-GeyF6vwfVTaCEiqTwLu1QPC_J4yj6m3U6BwM6KebuGvJGRH0IWhFpBSyTuib_9D7E7GmOkh_tYPxKUS9FFXzUtSylKJiiZrdQ6XVYm916jljk33L4f2WQ2JG_Dt2MMWojs6_Ppw9_bHNvt1gLxDceBG9m5Y9GLfBcgXq4GMMaO7qQYlajsxtNtRyZNR6ZJLbq81a3jndzgj_Bx-7D50</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1805485556</pqid></control><display><type>article</type><title>Single- and Bayesian Multi-Marker Genome-Wide Association for Haematological Parameters in Pigs</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ponsuksili, Siriluck ; Reyer, Henry ; Trakooljul, Nares ; Murani, Eduard ; Wimmers, Klaus</creator><contributor>Zhang, Qin</contributor><creatorcontrib>Ponsuksili, Siriluck ; Reyer, Henry ; Trakooljul, Nares ; Murani, Eduard ; Wimmers, Klaus ; Zhang, Qin</creatorcontrib><description>Haematological traits are important traits that show associations with immune and metabolic status, as well as diseases in humans and animals. Mapping genome regions that affect the blood cell traits can contribute to the identification of genomic features useable as biomarkers for immune, disease and metabolic status. A genome-wide association study (GWAS) was conducted using PorcineSNP60 BeadChips. Single-marker and Bayesian multi-marker approaches were integrated to identify genomic regions and corresponding genes overlapping for both methods. GWAS was performed for haematological traits of 591 German Landrace pig. Heritability estimates for haematological traits were medium to high. In total 252 single SNPs associated with 12 haematological traits were identified (NegLog10 of p-value > 5). The Bayesian multi-marker approach revealed 102 QTL regions across the genome, indicated by 1-Mb windows with contribution to additive genetic variance above 0.5%. The integration of both methods resulted in 24 overlapping QTL regions. This study identified overlapping QTL regions from single- and multi-marker approaches for haematological traits. Identifying candidate genes that affect blood cell traits provides the first step towards the understanding of the molecular basis of haematological phenotypes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0159212</identifier><identifier>PMID: 27434032</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agricultural commodities ; Animals ; Autism ; Bayes Theorem ; Bayesian analysis ; Bioindicators ; Biological markers ; Biology ; Biology and Life Sciences ; Biomarkers ; Blood ; Blood cells ; Blood platelets ; Blood Platelets - metabolism ; Chromosome Mapping ; Deoxyribonucleic acid ; DNA ; DNA methylation ; Erythrocytes - metabolism ; Gene mapping ; Genes ; Genetic aspects ; Genetic diversity ; Genetic variance ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Genomics ; Hematologic agents ; Hematology ; Hemodynamics - genetics ; Heritability ; Hogs ; Identification methods ; Immunological diseases ; Insulin ; Insulin-like growth factors ; Kinases ; Leukemia ; Medicine and Health Sciences ; Metabolism ; Open access ; Physiological aspects ; Pigs ; Polymorphism, Single Nucleotide ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; Single-nucleotide polymorphism ; Studies ; Sus scrofa ; Swine ; Swine - blood ; Swine - genetics</subject><ispartof>PloS one, 2016-07, Vol.11 (7), p.e0159212-e0159212</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Ponsuksili et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Ponsuksili et al 2016 Ponsuksili et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-789c127a162faf96f60bb9a3787218fab3e4f39c38a22812377e9d33efa793153</citedby><cites>FETCH-LOGICAL-c725t-789c127a162faf96f60bb9a3787218fab3e4f39c38a22812377e9d33efa793153</cites><orcidid>0000-0002-9523-6790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951017/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951017/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27434032$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Qin</contributor><creatorcontrib>Ponsuksili, Siriluck</creatorcontrib><creatorcontrib>Reyer, Henry</creatorcontrib><creatorcontrib>Trakooljul, Nares</creatorcontrib><creatorcontrib>Murani, Eduard</creatorcontrib><creatorcontrib>Wimmers, Klaus</creatorcontrib><title>Single- and Bayesian Multi-Marker Genome-Wide Association for Haematological Parameters in Pigs</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Haematological traits are important traits that show associations with immune and metabolic status, as well as diseases in humans and animals. Mapping genome regions that affect the blood cell traits can contribute to the identification of genomic features useable as biomarkers for immune, disease and metabolic status. A genome-wide association study (GWAS) was conducted using PorcineSNP60 BeadChips. Single-marker and Bayesian multi-marker approaches were integrated to identify genomic regions and corresponding genes overlapping for both methods. GWAS was performed for haematological traits of 591 German Landrace pig. Heritability estimates for haematological traits were medium to high. In total 252 single SNPs associated with 12 haematological traits were identified (NegLog10 of p-value > 5). The Bayesian multi-marker approach revealed 102 QTL regions across the genome, indicated by 1-Mb windows with contribution to additive genetic variance above 0.5%. The integration of both methods resulted in 24 overlapping QTL regions. This study identified overlapping QTL regions from single- and multi-marker approaches for haematological traits. Identifying candidate genes that affect blood cell traits provides the first step towards the understanding of the molecular basis of haematological phenotypes.</description><subject>Agricultural commodities</subject><subject>Animals</subject><subject>Autism</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bioindicators</subject><subject>Biological markers</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Blood</subject><subject>Blood cells</subject><subject>Blood platelets</subject><subject>Blood Platelets - metabolism</subject><subject>Chromosome Mapping</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>Erythrocytes - metabolism</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic variance</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hematologic agents</subject><subject>Hematology</subject><subject>Hemodynamics - genetics</subject><subject>Heritability</subject><subject>Hogs</subject><subject>Identification methods</subject><subject>Immunological diseases</subject><subject>Insulin</subject><subject>Insulin-like growth factors</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Open access</subject><subject>Physiological aspects</subject><subject>Pigs</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Single-nucleotide polymorphism</subject><subject>Studies</subject><subject>Sus scrofa</subject><subject>Swine</subject><subject>Swine - blood</subject><subject>Swine - genetics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tv1DAQxyMEoqXwDRBEQkJwyOJHHCcXpKWCtlKrVpTH0Zp1xqmLExc7QfTb4-1uq13UQ-WDrfFv_h7PI8teUjKjXNIPl34KA7jZlR9wRqhoGGWPsl3acFZUjPDHG-ed7FmMl4QIXlfV02yHyZKXhLPdTJ3boXNY5DC0-Se4xmhhyE8mN9riBMIvDPkBDr7H4qdtMZ_H6LWF0fohNz7kh4A9jN75zmpw-RkE6HHEEHM75Ge2i8-zJwZcxBfrfS_7_uXzt_3D4vj04Gh_flxoycRYyLrRlEmgFTNgmspUZLFogMtaMlobWHAsDW80r4GxmjIuJTYt52hANpwKvpe9XuleOR_VOjdR0ZqIshZCVIk4WhGth0t1FWwP4Vp5sOrG4EOnIIxWO1RJnSIwanRTlqZl0LKKtlxj3ZKFJpi0Pq5fmxY9thqHMYDbEt2-GeyF6vwfVTaCEiqTwLu1QPC_J4yj6m3U6BwM6KebuGvJGRH0IWhFpBSyTuib_9D7E7GmOkh_tYPxKUS9FFXzUtSylKJiiZrdQ6XVYm916jljk33L4f2WQ2JG_Dt2MMWojs6_Ppw9_bHNvt1gLxDceBG9m5Y9GLfBcgXq4GMMaO7qQYlajsxtNtRyZNR6ZJLbq81a3jndzgj_Bx-7D50</recordid><startdate>20160719</startdate><enddate>20160719</enddate><creator>Ponsuksili, Siriluck</creator><creator>Reyer, Henry</creator><creator>Trakooljul, Nares</creator><creator>Murani, Eduard</creator><creator>Wimmers, Klaus</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9523-6790</orcidid></search><sort><creationdate>20160719</creationdate><title>Single- and Bayesian Multi-Marker Genome-Wide Association for Haematological Parameters in Pigs</title><author>Ponsuksili, Siriluck ; Reyer, Henry ; Trakooljul, Nares ; Murani, Eduard ; Wimmers, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-789c127a162faf96f60bb9a3787218fab3e4f39c38a22812377e9d33efa793153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agricultural commodities</topic><topic>Animals</topic><topic>Autism</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bioindicators</topic><topic>Biological markers</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Blood</topic><topic>Blood cells</topic><topic>Blood platelets</topic><topic>Blood Platelets - metabolism</topic><topic>Chromosome Mapping</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>Erythrocytes - metabolism</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic variance</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hematologic agents</topic><topic>Hematology</topic><topic>Hemodynamics - genetics</topic><topic>Heritability</topic><topic>Hogs</topic><topic>Identification methods</topic><topic>Immunological diseases</topic><topic>Insulin</topic><topic>Insulin-like growth factors</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Open access</topic><topic>Physiological aspects</topic><topic>Pigs</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Single-nucleotide polymorphism</topic><topic>Studies</topic><topic>Sus scrofa</topic><topic>Swine</topic><topic>Swine - blood</topic><topic>Swine - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ponsuksili, Siriluck</creatorcontrib><creatorcontrib>Reyer, Henry</creatorcontrib><creatorcontrib>Trakooljul, Nares</creatorcontrib><creatorcontrib>Murani, Eduard</creatorcontrib><creatorcontrib>Wimmers, Klaus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ponsuksili, Siriluck</au><au>Reyer, Henry</au><au>Trakooljul, Nares</au><au>Murani, Eduard</au><au>Wimmers, Klaus</au><au>Zhang, Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single- and Bayesian Multi-Marker Genome-Wide Association for Haematological Parameters in Pigs</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-07-19</date><risdate>2016</risdate><volume>11</volume><issue>7</issue><spage>e0159212</spage><epage>e0159212</epage><pages>e0159212-e0159212</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Haematological traits are important traits that show associations with immune and metabolic status, as well as diseases in humans and animals. Mapping genome regions that affect the blood cell traits can contribute to the identification of genomic features useable as biomarkers for immune, disease and metabolic status. A genome-wide association study (GWAS) was conducted using PorcineSNP60 BeadChips. Single-marker and Bayesian multi-marker approaches were integrated to identify genomic regions and corresponding genes overlapping for both methods. GWAS was performed for haematological traits of 591 German Landrace pig. Heritability estimates for haematological traits were medium to high. In total 252 single SNPs associated with 12 haematological traits were identified (NegLog10 of p-value > 5). The Bayesian multi-marker approach revealed 102 QTL regions across the genome, indicated by 1-Mb windows with contribution to additive genetic variance above 0.5%. The integration of both methods resulted in 24 overlapping QTL regions. This study identified overlapping QTL regions from single- and multi-marker approaches for haematological traits. Identifying candidate genes that affect blood cell traits provides the first step towards the understanding of the molecular basis of haematological phenotypes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27434032</pmid><doi>10.1371/journal.pone.0159212</doi><tpages>e0159212</tpages><orcidid>https://orcid.org/0000-0002-9523-6790</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-07, Vol.11 (7), p.e0159212-e0159212 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1805485556 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Agricultural commodities Animals Autism Bayes Theorem Bayesian analysis Bioindicators Biological markers Biology Biology and Life Sciences Biomarkers Blood Blood cells Blood platelets Blood Platelets - metabolism Chromosome Mapping Deoxyribonucleic acid DNA DNA methylation Erythrocytes - metabolism Gene mapping Genes Genetic aspects Genetic diversity Genetic variance Genome-wide association studies Genome-Wide Association Study Genomes Genomics Hematologic agents Hematology Hemodynamics - genetics Heritability Hogs Identification methods Immunological diseases Insulin Insulin-like growth factors Kinases Leukemia Medicine and Health Sciences Metabolism Open access Physiological aspects Pigs Polymorphism, Single Nucleotide Quantitative trait loci Quantitative Trait Loci - genetics Single-nucleotide polymorphism Studies Sus scrofa Swine Swine - blood Swine - genetics |
title | Single- and Bayesian Multi-Marker Genome-Wide Association for Haematological Parameters in Pigs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-%20and%20Bayesian%20Multi-Marker%20Genome-Wide%20Association%20for%20Haematological%20Parameters%20in%20Pigs&rft.jtitle=PloS%20one&rft.au=Ponsuksili,%20Siriluck&rft.date=2016-07-19&rft.volume=11&rft.issue=7&rft.spage=e0159212&rft.epage=e0159212&rft.pages=e0159212-e0159212&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0159212&rft_dat=%3Cgale_plos_%3EA458747562%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1805485556&rft_id=info:pmid/27434032&rft_galeid=A458747562&rft_doaj_id=oai_doaj_org_article_3771ea21fc944fd2ad261d3ce8d0bc0e&rfr_iscdi=true |