Single- and Bayesian Multi-Marker Genome-Wide Association for Haematological Parameters in Pigs

Haematological traits are important traits that show associations with immune and metabolic status, as well as diseases in humans and animals. Mapping genome regions that affect the blood cell traits can contribute to the identification of genomic features useable as biomarkers for immune, disease a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-07, Vol.11 (7), p.e0159212-e0159212
Hauptverfasser: Ponsuksili, Siriluck, Reyer, Henry, Trakooljul, Nares, Murani, Eduard, Wimmers, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0159212
container_issue 7
container_start_page e0159212
container_title PloS one
container_volume 11
creator Ponsuksili, Siriluck
Reyer, Henry
Trakooljul, Nares
Murani, Eduard
Wimmers, Klaus
description Haematological traits are important traits that show associations with immune and metabolic status, as well as diseases in humans and animals. Mapping genome regions that affect the blood cell traits can contribute to the identification of genomic features useable as biomarkers for immune, disease and metabolic status. A genome-wide association study (GWAS) was conducted using PorcineSNP60 BeadChips. Single-marker and Bayesian multi-marker approaches were integrated to identify genomic regions and corresponding genes overlapping for both methods. GWAS was performed for haematological traits of 591 German Landrace pig. Heritability estimates for haematological traits were medium to high. In total 252 single SNPs associated with 12 haematological traits were identified (NegLog10 of p-value > 5). The Bayesian multi-marker approach revealed 102 QTL regions across the genome, indicated by 1-Mb windows with contribution to additive genetic variance above 0.5%. The integration of both methods resulted in 24 overlapping QTL regions. This study identified overlapping QTL regions from single- and multi-marker approaches for haematological traits. Identifying candidate genes that affect blood cell traits provides the first step towards the understanding of the molecular basis of haematological phenotypes.
doi_str_mv 10.1371/journal.pone.0159212
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1805485556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A458747562</galeid><doaj_id>oai_doaj_org_article_3771ea21fc944fd2ad261d3ce8d0bc0e</doaj_id><sourcerecordid>A458747562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-789c127a162faf96f60bb9a3787218fab3e4f39c38a22812377e9d33efa793153</originalsourceid><addsrcrecordid>eNqNk0tv1DAQxyMEoqXwDRBEQkJwyOJHHCcXpKWCtlKrVpTH0Zp1xqmLExc7QfTb4-1uq13UQ-WDrfFv_h7PI8teUjKjXNIPl34KA7jZlR9wRqhoGGWPsl3acFZUjPDHG-ed7FmMl4QIXlfV02yHyZKXhLPdTJ3boXNY5DC0-Se4xmhhyE8mN9riBMIvDPkBDr7H4qdtMZ_H6LWF0fohNz7kh4A9jN75zmpw-RkE6HHEEHM75Ge2i8-zJwZcxBfrfS_7_uXzt_3D4vj04Gh_flxoycRYyLrRlEmgFTNgmspUZLFogMtaMlobWHAsDW80r4GxmjIuJTYt52hANpwKvpe9XuleOR_VOjdR0ZqIshZCVIk4WhGth0t1FWwP4Vp5sOrG4EOnIIxWO1RJnSIwanRTlqZl0LKKtlxj3ZKFJpi0Pq5fmxY9thqHMYDbEt2-GeyF6vwfVTaCEiqTwLu1QPC_J4yj6m3U6BwM6KebuGvJGRH0IWhFpBSyTuib_9D7E7GmOkh_tYPxKUS9FFXzUtSylKJiiZrdQ6XVYm916jljk33L4f2WQ2JG_Dt2MMWojs6_Ppw9_bHNvt1gLxDceBG9m5Y9GLfBcgXq4GMMaO7qQYlajsxtNtRyZNR6ZJLbq81a3jndzgj_Bx-7D50</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1805485556</pqid></control><display><type>article</type><title>Single- and Bayesian Multi-Marker Genome-Wide Association for Haematological Parameters in Pigs</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ponsuksili, Siriluck ; Reyer, Henry ; Trakooljul, Nares ; Murani, Eduard ; Wimmers, Klaus</creator><contributor>Zhang, Qin</contributor><creatorcontrib>Ponsuksili, Siriluck ; Reyer, Henry ; Trakooljul, Nares ; Murani, Eduard ; Wimmers, Klaus ; Zhang, Qin</creatorcontrib><description>Haematological traits are important traits that show associations with immune and metabolic status, as well as diseases in humans and animals. Mapping genome regions that affect the blood cell traits can contribute to the identification of genomic features useable as biomarkers for immune, disease and metabolic status. A genome-wide association study (GWAS) was conducted using PorcineSNP60 BeadChips. Single-marker and Bayesian multi-marker approaches were integrated to identify genomic regions and corresponding genes overlapping for both methods. GWAS was performed for haematological traits of 591 German Landrace pig. Heritability estimates for haematological traits were medium to high. In total 252 single SNPs associated with 12 haematological traits were identified (NegLog10 of p-value &gt; 5). The Bayesian multi-marker approach revealed 102 QTL regions across the genome, indicated by 1-Mb windows with contribution to additive genetic variance above 0.5%. The integration of both methods resulted in 24 overlapping QTL regions. This study identified overlapping QTL regions from single- and multi-marker approaches for haematological traits. Identifying candidate genes that affect blood cell traits provides the first step towards the understanding of the molecular basis of haematological phenotypes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0159212</identifier><identifier>PMID: 27434032</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agricultural commodities ; Animals ; Autism ; Bayes Theorem ; Bayesian analysis ; Bioindicators ; Biological markers ; Biology ; Biology and Life Sciences ; Biomarkers ; Blood ; Blood cells ; Blood platelets ; Blood Platelets - metabolism ; Chromosome Mapping ; Deoxyribonucleic acid ; DNA ; DNA methylation ; Erythrocytes - metabolism ; Gene mapping ; Genes ; Genetic aspects ; Genetic diversity ; Genetic variance ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Genomics ; Hematologic agents ; Hematology ; Hemodynamics - genetics ; Heritability ; Hogs ; Identification methods ; Immunological diseases ; Insulin ; Insulin-like growth factors ; Kinases ; Leukemia ; Medicine and Health Sciences ; Metabolism ; Open access ; Physiological aspects ; Pigs ; Polymorphism, Single Nucleotide ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; Single-nucleotide polymorphism ; Studies ; Sus scrofa ; Swine ; Swine - blood ; Swine - genetics</subject><ispartof>PloS one, 2016-07, Vol.11 (7), p.e0159212-e0159212</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Ponsuksili et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Ponsuksili et al 2016 Ponsuksili et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-789c127a162faf96f60bb9a3787218fab3e4f39c38a22812377e9d33efa793153</citedby><cites>FETCH-LOGICAL-c725t-789c127a162faf96f60bb9a3787218fab3e4f39c38a22812377e9d33efa793153</cites><orcidid>0000-0002-9523-6790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951017/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951017/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27434032$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Qin</contributor><creatorcontrib>Ponsuksili, Siriluck</creatorcontrib><creatorcontrib>Reyer, Henry</creatorcontrib><creatorcontrib>Trakooljul, Nares</creatorcontrib><creatorcontrib>Murani, Eduard</creatorcontrib><creatorcontrib>Wimmers, Klaus</creatorcontrib><title>Single- and Bayesian Multi-Marker Genome-Wide Association for Haematological Parameters in Pigs</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Haematological traits are important traits that show associations with immune and metabolic status, as well as diseases in humans and animals. Mapping genome regions that affect the blood cell traits can contribute to the identification of genomic features useable as biomarkers for immune, disease and metabolic status. A genome-wide association study (GWAS) was conducted using PorcineSNP60 BeadChips. Single-marker and Bayesian multi-marker approaches were integrated to identify genomic regions and corresponding genes overlapping for both methods. GWAS was performed for haematological traits of 591 German Landrace pig. Heritability estimates for haematological traits were medium to high. In total 252 single SNPs associated with 12 haematological traits were identified (NegLog10 of p-value &gt; 5). The Bayesian multi-marker approach revealed 102 QTL regions across the genome, indicated by 1-Mb windows with contribution to additive genetic variance above 0.5%. The integration of both methods resulted in 24 overlapping QTL regions. This study identified overlapping QTL regions from single- and multi-marker approaches for haematological traits. Identifying candidate genes that affect blood cell traits provides the first step towards the understanding of the molecular basis of haematological phenotypes.</description><subject>Agricultural commodities</subject><subject>Animals</subject><subject>Autism</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bioindicators</subject><subject>Biological markers</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Blood</subject><subject>Blood cells</subject><subject>Blood platelets</subject><subject>Blood Platelets - metabolism</subject><subject>Chromosome Mapping</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>Erythrocytes - metabolism</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic variance</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hematologic agents</subject><subject>Hematology</subject><subject>Hemodynamics - genetics</subject><subject>Heritability</subject><subject>Hogs</subject><subject>Identification methods</subject><subject>Immunological diseases</subject><subject>Insulin</subject><subject>Insulin-like growth factors</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Open access</subject><subject>Physiological aspects</subject><subject>Pigs</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Single-nucleotide polymorphism</subject><subject>Studies</subject><subject>Sus scrofa</subject><subject>Swine</subject><subject>Swine - blood</subject><subject>Swine - genetics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tv1DAQxyMEoqXwDRBEQkJwyOJHHCcXpKWCtlKrVpTH0Zp1xqmLExc7QfTb4-1uq13UQ-WDrfFv_h7PI8teUjKjXNIPl34KA7jZlR9wRqhoGGWPsl3acFZUjPDHG-ed7FmMl4QIXlfV02yHyZKXhLPdTJ3boXNY5DC0-Se4xmhhyE8mN9riBMIvDPkBDr7H4qdtMZ_H6LWF0fohNz7kh4A9jN75zmpw-RkE6HHEEHM75Ge2i8-zJwZcxBfrfS_7_uXzt_3D4vj04Gh_flxoycRYyLrRlEmgFTNgmspUZLFogMtaMlobWHAsDW80r4GxmjIuJTYt52hANpwKvpe9XuleOR_VOjdR0ZqIshZCVIk4WhGth0t1FWwP4Vp5sOrG4EOnIIxWO1RJnSIwanRTlqZl0LKKtlxj3ZKFJpi0Pq5fmxY9thqHMYDbEt2-GeyF6vwfVTaCEiqTwLu1QPC_J4yj6m3U6BwM6KebuGvJGRH0IWhFpBSyTuib_9D7E7GmOkh_tYPxKUS9FFXzUtSylKJiiZrdQ6XVYm916jljk33L4f2WQ2JG_Dt2MMWojs6_Ppw9_bHNvt1gLxDceBG9m5Y9GLfBcgXq4GMMaO7qQYlajsxtNtRyZNR6ZJLbq81a3jndzgj_Bx-7D50</recordid><startdate>20160719</startdate><enddate>20160719</enddate><creator>Ponsuksili, Siriluck</creator><creator>Reyer, Henry</creator><creator>Trakooljul, Nares</creator><creator>Murani, Eduard</creator><creator>Wimmers, Klaus</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9523-6790</orcidid></search><sort><creationdate>20160719</creationdate><title>Single- and Bayesian Multi-Marker Genome-Wide Association for Haematological Parameters in Pigs</title><author>Ponsuksili, Siriluck ; Reyer, Henry ; Trakooljul, Nares ; Murani, Eduard ; Wimmers, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-789c127a162faf96f60bb9a3787218fab3e4f39c38a22812377e9d33efa793153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agricultural commodities</topic><topic>Animals</topic><topic>Autism</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bioindicators</topic><topic>Biological markers</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Blood</topic><topic>Blood cells</topic><topic>Blood platelets</topic><topic>Blood Platelets - metabolism</topic><topic>Chromosome Mapping</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>Erythrocytes - metabolism</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic variance</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hematologic agents</topic><topic>Hematology</topic><topic>Hemodynamics - genetics</topic><topic>Heritability</topic><topic>Hogs</topic><topic>Identification methods</topic><topic>Immunological diseases</topic><topic>Insulin</topic><topic>Insulin-like growth factors</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Open access</topic><topic>Physiological aspects</topic><topic>Pigs</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Single-nucleotide polymorphism</topic><topic>Studies</topic><topic>Sus scrofa</topic><topic>Swine</topic><topic>Swine - blood</topic><topic>Swine - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ponsuksili, Siriluck</creatorcontrib><creatorcontrib>Reyer, Henry</creatorcontrib><creatorcontrib>Trakooljul, Nares</creatorcontrib><creatorcontrib>Murani, Eduard</creatorcontrib><creatorcontrib>Wimmers, Klaus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ponsuksili, Siriluck</au><au>Reyer, Henry</au><au>Trakooljul, Nares</au><au>Murani, Eduard</au><au>Wimmers, Klaus</au><au>Zhang, Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single- and Bayesian Multi-Marker Genome-Wide Association for Haematological Parameters in Pigs</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-07-19</date><risdate>2016</risdate><volume>11</volume><issue>7</issue><spage>e0159212</spage><epage>e0159212</epage><pages>e0159212-e0159212</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Haematological traits are important traits that show associations with immune and metabolic status, as well as diseases in humans and animals. Mapping genome regions that affect the blood cell traits can contribute to the identification of genomic features useable as biomarkers for immune, disease and metabolic status. A genome-wide association study (GWAS) was conducted using PorcineSNP60 BeadChips. Single-marker and Bayesian multi-marker approaches were integrated to identify genomic regions and corresponding genes overlapping for both methods. GWAS was performed for haematological traits of 591 German Landrace pig. Heritability estimates for haematological traits were medium to high. In total 252 single SNPs associated with 12 haematological traits were identified (NegLog10 of p-value &gt; 5). The Bayesian multi-marker approach revealed 102 QTL regions across the genome, indicated by 1-Mb windows with contribution to additive genetic variance above 0.5%. The integration of both methods resulted in 24 overlapping QTL regions. This study identified overlapping QTL regions from single- and multi-marker approaches for haematological traits. Identifying candidate genes that affect blood cell traits provides the first step towards the understanding of the molecular basis of haematological phenotypes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27434032</pmid><doi>10.1371/journal.pone.0159212</doi><tpages>e0159212</tpages><orcidid>https://orcid.org/0000-0002-9523-6790</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-07, Vol.11 (7), p.e0159212-e0159212
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1805485556
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Agricultural commodities
Animals
Autism
Bayes Theorem
Bayesian analysis
Bioindicators
Biological markers
Biology
Biology and Life Sciences
Biomarkers
Blood
Blood cells
Blood platelets
Blood Platelets - metabolism
Chromosome Mapping
Deoxyribonucleic acid
DNA
DNA methylation
Erythrocytes - metabolism
Gene mapping
Genes
Genetic aspects
Genetic diversity
Genetic variance
Genome-wide association studies
Genome-Wide Association Study
Genomes
Genomics
Hematologic agents
Hematology
Hemodynamics - genetics
Heritability
Hogs
Identification methods
Immunological diseases
Insulin
Insulin-like growth factors
Kinases
Leukemia
Medicine and Health Sciences
Metabolism
Open access
Physiological aspects
Pigs
Polymorphism, Single Nucleotide
Quantitative trait loci
Quantitative Trait Loci - genetics
Single-nucleotide polymorphism
Studies
Sus scrofa
Swine
Swine - blood
Swine - genetics
title Single- and Bayesian Multi-Marker Genome-Wide Association for Haematological Parameters in Pigs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-%20and%20Bayesian%20Multi-Marker%20Genome-Wide%20Association%20for%20Haematological%20Parameters%20in%20Pigs&rft.jtitle=PloS%20one&rft.au=Ponsuksili,%20Siriluck&rft.date=2016-07-19&rft.volume=11&rft.issue=7&rft.spage=e0159212&rft.epage=e0159212&rft.pages=e0159212-e0159212&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0159212&rft_dat=%3Cgale_plos_%3EA458747562%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1805485556&rft_id=info:pmid/27434032&rft_galeid=A458747562&rft_doaj_id=oai_doaj_org_article_3771ea21fc944fd2ad261d3ce8d0bc0e&rfr_iscdi=true