Multi-epitope Models Explain How Pre-existing Antibodies Affect the Generation of Broadly Protective Responses to Influenza

The development of next-generation influenza vaccines that elicit strain-transcendent immunity against both seasonal and pandemic viruses is a key public health goal. Targeting the evolutionarily conserved epitopes on the stem of influenza's major surface molecule, hemagglutinin, is an appealin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2016-06, Vol.12 (6), p.e1005692-e1005692
Hauptverfasser: Zarnitsyna, Veronika I, Lavine, Jennie, Ellebedy, Ali, Ahmed, Rafi, Antia, Rustom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1005692
container_issue 6
container_start_page e1005692
container_title PLoS pathogens
container_volume 12
creator Zarnitsyna, Veronika I
Lavine, Jennie
Ellebedy, Ali
Ahmed, Rafi
Antia, Rustom
description The development of next-generation influenza vaccines that elicit strain-transcendent immunity against both seasonal and pandemic viruses is a key public health goal. Targeting the evolutionarily conserved epitopes on the stem of influenza's major surface molecule, hemagglutinin, is an appealing prospect, and novel vaccine formulations show promising results in animal model systems. However, studies in humans indicate that natural infection and vaccination result in limited boosting of antibodies to the stem of HA, and the level of stem-specific antibody elicited is insufficient to provide broad strain-transcendent immunity. Here, we use mathematical models of the humoral immune response to explore how pre-existing immunity affects the ability of vaccines to boost antibodies to the head and stem of HA in humans, and, in particular, how it leads to the apparent lack of boosting of broadly cross-reactive antibodies to the stem epitopes. We consider hypotheses where binding of antibody to an epitope: (i) results in more rapid clearance of the antigen; (ii) leads to the formation of antigen-antibody complexes which inhibit B cell activation through Fcγ receptor-mediated mechanism; and (iii) masks the epitope and prevents the stimulation and proliferation of specific B cells. We find that only epitope masking but not the former two mechanisms to be key in recapitulating patterns in data. We discuss the ramifications of our findings for the development of vaccines against both seasonal and pandemic influenza.
doi_str_mv 10.1371/journal.ppat.1005692
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1805470570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A479525031</galeid><doaj_id>oai_doaj_org_article_216c660c9e644385b1650215b1fe0282</doaj_id><sourcerecordid>A479525031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c694t-730a50531bd597df6cb8edcd2d42fe01255cd1bb87833e08932f0c9e1a1537b53</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEomXhHyCIxAUOu_gjtuNLpaUq7UotoAJny3EmW1dZO8RO2cKfx9tNqy6qhJAPtsbP-3pmrMmylxjNMBX4_aUfeqfbWdfpOMMIMS7Jo2wfM0angori8b3zXvYshEuECkwxf5rtEUEpJ1LsZ7_PhjbaKXQ2-g7yM19DG_Kjdddq6_IT_zP_0sMU1jZE65b53EVb-dpCyOdNAybm8QLyY3DQ62i9y32Tf-i9rtvrJPQxEfYK8nMInXchqaLPF65pB3C_9PPsSaPbAC_GfZJ9_3j07fBkevr5eHE4P50aLouYCkCaIUZxVTMp6oabqoTa1KQuSAMIE8ZMjauqFCWlgEpJSYOMBKwxo6JidJK93vp2rQ9q7FtQuESsEIgJlIjFlqi9vlRdb1e6v1ZeW3UT8P1S6T5a04IimBvON_68KGjJKswZIjjtKRdSkuR1ML42VKuUJ7jY63bHdPfG2Qu19FeqkLiUmCeDt6NB738MEKJa2WCgbbUDP9zkXQpaEl7-GxVSMo5k4ifZm7_QhxsxUkudarWu8SlFszFV80JIRhiiOFGzB6i0alhZ4x00NsV3BO92BImJsI5LPYSgFl_P_4P9tMsWW9b0PoQemrs2Y6Q2U3JbpNpMiRqnJMle3f-iO9HtWNA_vKEM7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1805470570</pqid></control><display><type>article</type><title>Multi-epitope Models Explain How Pre-existing Antibodies Affect the Generation of Broadly Protective Responses to Influenza</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zarnitsyna, Veronika I ; Lavine, Jennie ; Ellebedy, Ali ; Ahmed, Rafi ; Antia, Rustom</creator><contributor>Lauring, Adam S.</contributor><creatorcontrib>Zarnitsyna, Veronika I ; Lavine, Jennie ; Ellebedy, Ali ; Ahmed, Rafi ; Antia, Rustom ; Lauring, Adam S.</creatorcontrib><description>The development of next-generation influenza vaccines that elicit strain-transcendent immunity against both seasonal and pandemic viruses is a key public health goal. Targeting the evolutionarily conserved epitopes on the stem of influenza's major surface molecule, hemagglutinin, is an appealing prospect, and novel vaccine formulations show promising results in animal model systems. However, studies in humans indicate that natural infection and vaccination result in limited boosting of antibodies to the stem of HA, and the level of stem-specific antibody elicited is insufficient to provide broad strain-transcendent immunity. Here, we use mathematical models of the humoral immune response to explore how pre-existing immunity affects the ability of vaccines to boost antibodies to the head and stem of HA in humans, and, in particular, how it leads to the apparent lack of boosting of broadly cross-reactive antibodies to the stem epitopes. We consider hypotheses where binding of antibody to an epitope: (i) results in more rapid clearance of the antigen; (ii) leads to the formation of antigen-antibody complexes which inhibit B cell activation through Fcγ receptor-mediated mechanism; and (iii) masks the epitope and prevents the stimulation and proliferation of specific B cells. We find that only epitope masking but not the former two mechanisms to be key in recapitulating patterns in data. We discuss the ramifications of our findings for the development of vaccines against both seasonal and pandemic influenza.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1005692</identifier><identifier>PMID: 27336297</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Antibodies ; Antibodies, Viral - immunology ; Antigens ; Avian flu ; Biology and Life Sciences ; Care and treatment ; Epitopes, B-Lymphocyte - immunology ; Hemagglutinin Glycoproteins, Influenza Virus - immunology ; Humans ; Hypotheses ; Immune response ; Immunity, Humoral - immunology ; Immunoglobulins ; Influenza ; Influenza Vaccines - immunology ; Influenza, Human - immunology ; Mathematical models ; Medicine and Health Sciences ; Models, Theoretical ; Orthomyxoviridae Infections - immunology ; Pandemics ; Public health ; Studies ; Vaccination ; Vaccines ; Viruses</subject><ispartof>PLoS pathogens, 2016-06, Vol.12 (6), p.e1005692-e1005692</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Zarnitsyna VI, Lavine J, Ellebedy A, Ahmed R, Antia R (2016) Multi-epitope Models Explain How Pre-existing Antibodies Affect the Generation of Broadly Protective Responses to Influenza. PLoS Pathog 12(6): e1005692. doi:10.1371/journal.ppat.1005692</rights><rights>2016 Zarnitsyna et al 2016 Zarnitsyna et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Zarnitsyna VI, Lavine J, Ellebedy A, Ahmed R, Antia R (2016) Multi-epitope Models Explain How Pre-existing Antibodies Affect the Generation of Broadly Protective Responses to Influenza. PLoS Pathog 12(6): e1005692. doi:10.1371/journal.ppat.1005692</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c694t-730a50531bd597df6cb8edcd2d42fe01255cd1bb87833e08932f0c9e1a1537b53</citedby><cites>FETCH-LOGICAL-c694t-730a50531bd597df6cb8edcd2d42fe01255cd1bb87833e08932f0c9e1a1537b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918916/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918916/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27336297$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lauring, Adam S.</contributor><creatorcontrib>Zarnitsyna, Veronika I</creatorcontrib><creatorcontrib>Lavine, Jennie</creatorcontrib><creatorcontrib>Ellebedy, Ali</creatorcontrib><creatorcontrib>Ahmed, Rafi</creatorcontrib><creatorcontrib>Antia, Rustom</creatorcontrib><title>Multi-epitope Models Explain How Pre-existing Antibodies Affect the Generation of Broadly Protective Responses to Influenza</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>The development of next-generation influenza vaccines that elicit strain-transcendent immunity against both seasonal and pandemic viruses is a key public health goal. Targeting the evolutionarily conserved epitopes on the stem of influenza's major surface molecule, hemagglutinin, is an appealing prospect, and novel vaccine formulations show promising results in animal model systems. However, studies in humans indicate that natural infection and vaccination result in limited boosting of antibodies to the stem of HA, and the level of stem-specific antibody elicited is insufficient to provide broad strain-transcendent immunity. Here, we use mathematical models of the humoral immune response to explore how pre-existing immunity affects the ability of vaccines to boost antibodies to the head and stem of HA in humans, and, in particular, how it leads to the apparent lack of boosting of broadly cross-reactive antibodies to the stem epitopes. We consider hypotheses where binding of antibody to an epitope: (i) results in more rapid clearance of the antigen; (ii) leads to the formation of antigen-antibody complexes which inhibit B cell activation through Fcγ receptor-mediated mechanism; and (iii) masks the epitope and prevents the stimulation and proliferation of specific B cells. We find that only epitope masking but not the former two mechanisms to be key in recapitulating patterns in data. We discuss the ramifications of our findings for the development of vaccines against both seasonal and pandemic influenza.</description><subject>Analysis</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antibodies, Viral - immunology</subject><subject>Antigens</subject><subject>Avian flu</subject><subject>Biology and Life Sciences</subject><subject>Care and treatment</subject><subject>Epitopes, B-Lymphocyte - immunology</subject><subject>Hemagglutinin Glycoproteins, Influenza Virus - immunology</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Immune response</subject><subject>Immunity, Humoral - immunology</subject><subject>Immunoglobulins</subject><subject>Influenza</subject><subject>Influenza Vaccines - immunology</subject><subject>Influenza, Human - immunology</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Models, Theoretical</subject><subject>Orthomyxoviridae Infections - immunology</subject><subject>Pandemics</subject><subject>Public health</subject><subject>Studies</subject><subject>Vaccination</subject><subject>Vaccines</subject><subject>Viruses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEomXhHyCIxAUOu_gjtuNLpaUq7UotoAJny3EmW1dZO8RO2cKfx9tNqy6qhJAPtsbP-3pmrMmylxjNMBX4_aUfeqfbWdfpOMMIMS7Jo2wfM0angori8b3zXvYshEuECkwxf5rtEUEpJ1LsZ7_PhjbaKXQ2-g7yM19DG_Kjdddq6_IT_zP_0sMU1jZE65b53EVb-dpCyOdNAybm8QLyY3DQ62i9y32Tf-i9rtvrJPQxEfYK8nMInXchqaLPF65pB3C_9PPsSaPbAC_GfZJ9_3j07fBkevr5eHE4P50aLouYCkCaIUZxVTMp6oabqoTa1KQuSAMIE8ZMjauqFCWlgEpJSYOMBKwxo6JidJK93vp2rQ9q7FtQuESsEIgJlIjFlqi9vlRdb1e6v1ZeW3UT8P1S6T5a04IimBvON_68KGjJKswZIjjtKRdSkuR1ML42VKuUJ7jY63bHdPfG2Qu19FeqkLiUmCeDt6NB738MEKJa2WCgbbUDP9zkXQpaEl7-GxVSMo5k4ifZm7_QhxsxUkudarWu8SlFszFV80JIRhiiOFGzB6i0alhZ4x00NsV3BO92BImJsI5LPYSgFl_P_4P9tMsWW9b0PoQemrs2Y6Q2U3JbpNpMiRqnJMle3f-iO9HtWNA_vKEM7A</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Zarnitsyna, Veronika I</creator><creator>Lavine, Jennie</creator><creator>Ellebedy, Ali</creator><creator>Ahmed, Rafi</creator><creator>Antia, Rustom</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160601</creationdate><title>Multi-epitope Models Explain How Pre-existing Antibodies Affect the Generation of Broadly Protective Responses to Influenza</title><author>Zarnitsyna, Veronika I ; Lavine, Jennie ; Ellebedy, Ali ; Ahmed, Rafi ; Antia, Rustom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c694t-730a50531bd597df6cb8edcd2d42fe01255cd1bb87833e08932f0c9e1a1537b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antibodies, Viral - immunology</topic><topic>Antigens</topic><topic>Avian flu</topic><topic>Biology and Life Sciences</topic><topic>Care and treatment</topic><topic>Epitopes, B-Lymphocyte - immunology</topic><topic>Hemagglutinin Glycoproteins, Influenza Virus - immunology</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Immune response</topic><topic>Immunity, Humoral - immunology</topic><topic>Immunoglobulins</topic><topic>Influenza</topic><topic>Influenza Vaccines - immunology</topic><topic>Influenza, Human - immunology</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Models, Theoretical</topic><topic>Orthomyxoviridae Infections - immunology</topic><topic>Pandemics</topic><topic>Public health</topic><topic>Studies</topic><topic>Vaccination</topic><topic>Vaccines</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zarnitsyna, Veronika I</creatorcontrib><creatorcontrib>Lavine, Jennie</creatorcontrib><creatorcontrib>Ellebedy, Ali</creatorcontrib><creatorcontrib>Ahmed, Rafi</creatorcontrib><creatorcontrib>Antia, Rustom</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zarnitsyna, Veronika I</au><au>Lavine, Jennie</au><au>Ellebedy, Ali</au><au>Ahmed, Rafi</au><au>Antia, Rustom</au><au>Lauring, Adam S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-epitope Models Explain How Pre-existing Antibodies Affect the Generation of Broadly Protective Responses to Influenza</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>12</volume><issue>6</issue><spage>e1005692</spage><epage>e1005692</epage><pages>e1005692-e1005692</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>The development of next-generation influenza vaccines that elicit strain-transcendent immunity against both seasonal and pandemic viruses is a key public health goal. Targeting the evolutionarily conserved epitopes on the stem of influenza's major surface molecule, hemagglutinin, is an appealing prospect, and novel vaccine formulations show promising results in animal model systems. However, studies in humans indicate that natural infection and vaccination result in limited boosting of antibodies to the stem of HA, and the level of stem-specific antibody elicited is insufficient to provide broad strain-transcendent immunity. Here, we use mathematical models of the humoral immune response to explore how pre-existing immunity affects the ability of vaccines to boost antibodies to the head and stem of HA in humans, and, in particular, how it leads to the apparent lack of boosting of broadly cross-reactive antibodies to the stem epitopes. We consider hypotheses where binding of antibody to an epitope: (i) results in more rapid clearance of the antigen; (ii) leads to the formation of antigen-antibody complexes which inhibit B cell activation through Fcγ receptor-mediated mechanism; and (iii) masks the epitope and prevents the stimulation and proliferation of specific B cells. We find that only epitope masking but not the former two mechanisms to be key in recapitulating patterns in data. We discuss the ramifications of our findings for the development of vaccines against both seasonal and pandemic influenza.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27336297</pmid><doi>10.1371/journal.ppat.1005692</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2016-06, Vol.12 (6), p.e1005692-e1005692
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_1805470570
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Analysis
Animals
Antibodies
Antibodies, Viral - immunology
Antigens
Avian flu
Biology and Life Sciences
Care and treatment
Epitopes, B-Lymphocyte - immunology
Hemagglutinin Glycoproteins, Influenza Virus - immunology
Humans
Hypotheses
Immune response
Immunity, Humoral - immunology
Immunoglobulins
Influenza
Influenza Vaccines - immunology
Influenza, Human - immunology
Mathematical models
Medicine and Health Sciences
Models, Theoretical
Orthomyxoviridae Infections - immunology
Pandemics
Public health
Studies
Vaccination
Vaccines
Viruses
title Multi-epitope Models Explain How Pre-existing Antibodies Affect the Generation of Broadly Protective Responses to Influenza
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-epitope%20Models%20Explain%20How%20Pre-existing%20Antibodies%20Affect%20the%20Generation%20of%20Broadly%20Protective%20Responses%20to%20Influenza&rft.jtitle=PLoS%20pathogens&rft.au=Zarnitsyna,%20Veronika%20I&rft.date=2016-06-01&rft.volume=12&rft.issue=6&rft.spage=e1005692&rft.epage=e1005692&rft.pages=e1005692-e1005692&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1005692&rft_dat=%3Cgale_plos_%3EA479525031%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1805470570&rft_id=info:pmid/27336297&rft_galeid=A479525031&rft_doaj_id=oai_doaj_org_article_216c660c9e644385b1650215b1fe0282&rfr_iscdi=true