Learning Universal Computations with Spikes
Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity pa...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2016-06, Vol.12 (6), p.e1004895-e1004895 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1004895 |
---|---|
container_issue | 6 |
container_start_page | e1004895 |
container_title | PLoS computational biology |
container_volume | 12 |
creator | Thalmeier, Dominik Uhlmann, Marvin Kappen, Hilbert J Memmesheimer, Raoul-Martin |
description | Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity patterns, e.g. for locomotion. Many such computations require previous building of intrinsic world models. Here we show how spiking neural networks may solve these different tasks. Firstly, we derive constraints under which classes of spiking neural networks lend themselves to substrates of powerful general purpose computing. The networks contain dendritic or synaptic nonlinearities and have a constrained connectivity. We then combine such networks with learning rules for outputs or recurrent connections. We show that this allows to learn even difficult benchmark tasks such as the self-sustained generation of desired low-dimensional chaotic dynamics or memory-dependent computations. Furthermore, we show how spiking networks can build models of external world systems and use the acquired knowledge to control them. |
doi_str_mv | 10.1371/journal.pcbi.1004895 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1805469813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A479502791</galeid><doaj_id>oai_doaj_org_article_c2511a461a334bfbb736440b8eb09abc</doaj_id><sourcerecordid>A479502791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c666t-ea9eb99997ff6b234520ad3310062ceec6e761b90616f1d36340cabe840505ea3</originalsourceid><addsrcrecordid>eNqVkl1rFDEUhgdRbK3-A9EFbxTZNZl83whl8WNhUbD2OiSZM9Oss5MxmantvzfbnZauCGJykUPyvG_OOZyieI7RAhOB323CGDvTLnpn_QIjRKViD4pjzBiZC8Lkw3vxUfEkpQ1COVT8cXFUCoIUkfi4eLsGEzvfNbPzzl9CTKadLcO2Hwcz-NCl2S8_XMzOev8D0tPiUW3aBM-m86Q4__jh-_LzfP3102p5up47zvkwB6PAqrxEXXNbEspKZCpCco68dACOg-DYKsQxr3FFOKHIGQuSIoYYGHJSvNz79m1IeqozaSwRo1xJTDKx2hNVMBvdR7818VoH4_XNRYiNNnHwrgXtSoaxoRwbQqitrRWEU4qsBIuUsS57vZ9-G-0WKgfdEE17YHr40vkL3YRLTRXGmPJs8HoyiOHnCGnQW58ctK3pIIw3eUsupCTlv1GhhBQCo12Jr_5A_96IxZ5qTK7Vd3XIKbq8K9h6Fzqofb4_pUIxVAqFs-DNgSAzA1wNjRlT0quzb__Bfjlk6Z51MaQUob5rIEZ6N6-36evdvOppXrPsxf3m34luB5T8BlAL5NY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1805469813</pqid></control><display><type>article</type><title>Learning Universal Computations with Spikes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Thalmeier, Dominik ; Uhlmann, Marvin ; Kappen, Hilbert J ; Memmesheimer, Raoul-Martin</creator><contributor>Bethge, Matthias</contributor><creatorcontrib>Thalmeier, Dominik ; Uhlmann, Marvin ; Kappen, Hilbert J ; Memmesheimer, Raoul-Martin ; Bethge, Matthias</creatorcontrib><description>Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity patterns, e.g. for locomotion. Many such computations require previous building of intrinsic world models. Here we show how spiking neural networks may solve these different tasks. Firstly, we derive constraints under which classes of spiking neural networks lend themselves to substrates of powerful general purpose computing. The networks contain dendritic or synaptic nonlinearities and have a constrained connectivity. We then combine such networks with learning rules for outputs or recurrent connections. We show that this allows to learn even difficult benchmark tasks such as the self-sustained generation of desired low-dimensional chaotic dynamics or memory-dependent computations. Furthermore, we show how spiking networks can build models of external world systems and use the acquired knowledge to control them.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004895</identifier><identifier>PMID: 27309381</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Action Potentials - physiology ; Animals ; Biology and Life Sciences ; Computational Biology ; Computer and Information Sciences ; Humans ; Learning - physiology ; Medicine and Health Sciences ; Memory ; Memory, Long-Term - physiology ; Models, Neurological ; Nerve Net - physiology ; Neural circuitry ; Neural networks ; Neural Networks (Computer) ; Neurons ; Neurons - physiology ; Noise ; Nonlinear Dynamics ; Physical Sciences ; Physiological aspects ; Social Sciences ; Standard deviation ; Synaptic Transmission - physiology</subject><ispartof>PLoS computational biology, 2016-06, Vol.12 (6), p.e1004895-e1004895</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Thalmeier D, Uhlmann M, Kappen HJ, Memmesheimer R-M (2016) Learning Universal Computations with Spikes. PLoS Comput Biol 12(6): e1004895. doi:10.1371/journal.pcbi.1004895</rights><rights>2016 Thalmeier et al 2016 Thalmeier et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Thalmeier D, Uhlmann M, Kappen HJ, Memmesheimer R-M (2016) Learning Universal Computations with Spikes. PLoS Comput Biol 12(6): e1004895. doi:10.1371/journal.pcbi.1004895</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c666t-ea9eb99997ff6b234520ad3310062ceec6e761b90616f1d36340cabe840505ea3</citedby><cites>FETCH-LOGICAL-c666t-ea9eb99997ff6b234520ad3310062ceec6e761b90616f1d36340cabe840505ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911146/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911146/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27309381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bethge, Matthias</contributor><creatorcontrib>Thalmeier, Dominik</creatorcontrib><creatorcontrib>Uhlmann, Marvin</creatorcontrib><creatorcontrib>Kappen, Hilbert J</creatorcontrib><creatorcontrib>Memmesheimer, Raoul-Martin</creatorcontrib><title>Learning Universal Computations with Spikes</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity patterns, e.g. for locomotion. Many such computations require previous building of intrinsic world models. Here we show how spiking neural networks may solve these different tasks. Firstly, we derive constraints under which classes of spiking neural networks lend themselves to substrates of powerful general purpose computing. The networks contain dendritic or synaptic nonlinearities and have a constrained connectivity. We then combine such networks with learning rules for outputs or recurrent connections. We show that this allows to learn even difficult benchmark tasks such as the self-sustained generation of desired low-dimensional chaotic dynamics or memory-dependent computations. Furthermore, we show how spiking networks can build models of external world systems and use the acquired knowledge to control them.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Computational Biology</subject><subject>Computer and Information Sciences</subject><subject>Humans</subject><subject>Learning - physiology</subject><subject>Medicine and Health Sciences</subject><subject>Memory</subject><subject>Memory, Long-Term - physiology</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Noise</subject><subject>Nonlinear Dynamics</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Social Sciences</subject><subject>Standard deviation</subject><subject>Synaptic Transmission - physiology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl1rFDEUhgdRbK3-A9EFbxTZNZl83whl8WNhUbD2OiSZM9Oss5MxmantvzfbnZauCGJykUPyvG_OOZyieI7RAhOB323CGDvTLnpn_QIjRKViD4pjzBiZC8Lkw3vxUfEkpQ1COVT8cXFUCoIUkfi4eLsGEzvfNbPzzl9CTKadLcO2Hwcz-NCl2S8_XMzOev8D0tPiUW3aBM-m86Q4__jh-_LzfP3102p5up47zvkwB6PAqrxEXXNbEspKZCpCco68dACOg-DYKsQxr3FFOKHIGQuSIoYYGHJSvNz79m1IeqozaSwRo1xJTDKx2hNVMBvdR7818VoH4_XNRYiNNnHwrgXtSoaxoRwbQqitrRWEU4qsBIuUsS57vZ9-G-0WKgfdEE17YHr40vkL3YRLTRXGmPJs8HoyiOHnCGnQW58ctK3pIIw3eUsupCTlv1GhhBQCo12Jr_5A_96IxZ5qTK7Vd3XIKbq8K9h6Fzqofb4_pUIxVAqFs-DNgSAzA1wNjRlT0quzb__Bfjlk6Z51MaQUob5rIEZ6N6-36evdvOppXrPsxf3m34luB5T8BlAL5NY</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Thalmeier, Dominik</creator><creator>Uhlmann, Marvin</creator><creator>Kappen, Hilbert J</creator><creator>Memmesheimer, Raoul-Martin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160601</creationdate><title>Learning Universal Computations with Spikes</title><author>Thalmeier, Dominik ; Uhlmann, Marvin ; Kappen, Hilbert J ; Memmesheimer, Raoul-Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c666t-ea9eb99997ff6b234520ad3310062ceec6e761b90616f1d36340cabe840505ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Computational Biology</topic><topic>Computer and Information Sciences</topic><topic>Humans</topic><topic>Learning - physiology</topic><topic>Medicine and Health Sciences</topic><topic>Memory</topic><topic>Memory, Long-Term - physiology</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Noise</topic><topic>Nonlinear Dynamics</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Social Sciences</topic><topic>Standard deviation</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thalmeier, Dominik</creatorcontrib><creatorcontrib>Uhlmann, Marvin</creatorcontrib><creatorcontrib>Kappen, Hilbert J</creatorcontrib><creatorcontrib>Memmesheimer, Raoul-Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thalmeier, Dominik</au><au>Uhlmann, Marvin</au><au>Kappen, Hilbert J</au><au>Memmesheimer, Raoul-Martin</au><au>Bethge, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Universal Computations with Spikes</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>12</volume><issue>6</issue><spage>e1004895</spage><epage>e1004895</epage><pages>e1004895-e1004895</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity patterns, e.g. for locomotion. Many such computations require previous building of intrinsic world models. Here we show how spiking neural networks may solve these different tasks. Firstly, we derive constraints under which classes of spiking neural networks lend themselves to substrates of powerful general purpose computing. The networks contain dendritic or synaptic nonlinearities and have a constrained connectivity. We then combine such networks with learning rules for outputs or recurrent connections. We show that this allows to learn even difficult benchmark tasks such as the self-sustained generation of desired low-dimensional chaotic dynamics or memory-dependent computations. Furthermore, we show how spiking networks can build models of external world systems and use the acquired knowledge to control them.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27309381</pmid><doi>10.1371/journal.pcbi.1004895</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2016-06, Vol.12 (6), p.e1004895-e1004895 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1805469813 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Action Potentials - physiology Animals Biology and Life Sciences Computational Biology Computer and Information Sciences Humans Learning - physiology Medicine and Health Sciences Memory Memory, Long-Term - physiology Models, Neurological Nerve Net - physiology Neural circuitry Neural networks Neural Networks (Computer) Neurons Neurons - physiology Noise Nonlinear Dynamics Physical Sciences Physiological aspects Social Sciences Standard deviation Synaptic Transmission - physiology |
title | Learning Universal Computations with Spikes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Universal%20Computations%20with%20Spikes&rft.jtitle=PLoS%20computational%20biology&rft.au=Thalmeier,%20Dominik&rft.date=2016-06-01&rft.volume=12&rft.issue=6&rft.spage=e1004895&rft.epage=e1004895&rft.pages=e1004895-e1004895&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004895&rft_dat=%3Cgale_plos_%3EA479502791%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1805469813&rft_id=info:pmid/27309381&rft_galeid=A479502791&rft_doaj_id=oai_doaj_org_article_c2511a461a334bfbb736440b8eb09abc&rfr_iscdi=true |