Learning Universal Computations with Spikes

Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2016-06, Vol.12 (6), p.e1004895-e1004895
Hauptverfasser: Thalmeier, Dominik, Uhlmann, Marvin, Kappen, Hilbert J, Memmesheimer, Raoul-Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1004895
container_issue 6
container_start_page e1004895
container_title PLoS computational biology
container_volume 12
creator Thalmeier, Dominik
Uhlmann, Marvin
Kappen, Hilbert J
Memmesheimer, Raoul-Martin
description Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity patterns, e.g. for locomotion. Many such computations require previous building of intrinsic world models. Here we show how spiking neural networks may solve these different tasks. Firstly, we derive constraints under which classes of spiking neural networks lend themselves to substrates of powerful general purpose computing. The networks contain dendritic or synaptic nonlinearities and have a constrained connectivity. We then combine such networks with learning rules for outputs or recurrent connections. We show that this allows to learn even difficult benchmark tasks such as the self-sustained generation of desired low-dimensional chaotic dynamics or memory-dependent computations. Furthermore, we show how spiking networks can build models of external world systems and use the acquired knowledge to control them.
doi_str_mv 10.1371/journal.pcbi.1004895
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1805469813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A479502791</galeid><doaj_id>oai_doaj_org_article_c2511a461a334bfbb736440b8eb09abc</doaj_id><sourcerecordid>A479502791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c666t-ea9eb99997ff6b234520ad3310062ceec6e761b90616f1d36340cabe840505ea3</originalsourceid><addsrcrecordid>eNqVkl1rFDEUhgdRbK3-A9EFbxTZNZl83whl8WNhUbD2OiSZM9Oss5MxmantvzfbnZauCGJykUPyvG_OOZyieI7RAhOB323CGDvTLnpn_QIjRKViD4pjzBiZC8Lkw3vxUfEkpQ1COVT8cXFUCoIUkfi4eLsGEzvfNbPzzl9CTKadLcO2Hwcz-NCl2S8_XMzOev8D0tPiUW3aBM-m86Q4__jh-_LzfP3102p5up47zvkwB6PAqrxEXXNbEspKZCpCco68dACOg-DYKsQxr3FFOKHIGQuSIoYYGHJSvNz79m1IeqozaSwRo1xJTDKx2hNVMBvdR7818VoH4_XNRYiNNnHwrgXtSoaxoRwbQqitrRWEU4qsBIuUsS57vZ9-G-0WKgfdEE17YHr40vkL3YRLTRXGmPJs8HoyiOHnCGnQW58ctK3pIIw3eUsupCTlv1GhhBQCo12Jr_5A_96IxZ5qTK7Vd3XIKbq8K9h6Fzqofb4_pUIxVAqFs-DNgSAzA1wNjRlT0quzb__Bfjlk6Z51MaQUob5rIEZ6N6-36evdvOppXrPsxf3m34luB5T8BlAL5NY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1805469813</pqid></control><display><type>article</type><title>Learning Universal Computations with Spikes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Thalmeier, Dominik ; Uhlmann, Marvin ; Kappen, Hilbert J ; Memmesheimer, Raoul-Martin</creator><contributor>Bethge, Matthias</contributor><creatorcontrib>Thalmeier, Dominik ; Uhlmann, Marvin ; Kappen, Hilbert J ; Memmesheimer, Raoul-Martin ; Bethge, Matthias</creatorcontrib><description>Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity patterns, e.g. for locomotion. Many such computations require previous building of intrinsic world models. Here we show how spiking neural networks may solve these different tasks. Firstly, we derive constraints under which classes of spiking neural networks lend themselves to substrates of powerful general purpose computing. The networks contain dendritic or synaptic nonlinearities and have a constrained connectivity. We then combine such networks with learning rules for outputs or recurrent connections. We show that this allows to learn even difficult benchmark tasks such as the self-sustained generation of desired low-dimensional chaotic dynamics or memory-dependent computations. Furthermore, we show how spiking networks can build models of external world systems and use the acquired knowledge to control them.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004895</identifier><identifier>PMID: 27309381</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Action Potentials - physiology ; Animals ; Biology and Life Sciences ; Computational Biology ; Computer and Information Sciences ; Humans ; Learning - physiology ; Medicine and Health Sciences ; Memory ; Memory, Long-Term - physiology ; Models, Neurological ; Nerve Net - physiology ; Neural circuitry ; Neural networks ; Neural Networks (Computer) ; Neurons ; Neurons - physiology ; Noise ; Nonlinear Dynamics ; Physical Sciences ; Physiological aspects ; Social Sciences ; Standard deviation ; Synaptic Transmission - physiology</subject><ispartof>PLoS computational biology, 2016-06, Vol.12 (6), p.e1004895-e1004895</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Thalmeier D, Uhlmann M, Kappen HJ, Memmesheimer R-M (2016) Learning Universal Computations with Spikes. PLoS Comput Biol 12(6): e1004895. doi:10.1371/journal.pcbi.1004895</rights><rights>2016 Thalmeier et al 2016 Thalmeier et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Thalmeier D, Uhlmann M, Kappen HJ, Memmesheimer R-M (2016) Learning Universal Computations with Spikes. PLoS Comput Biol 12(6): e1004895. doi:10.1371/journal.pcbi.1004895</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c666t-ea9eb99997ff6b234520ad3310062ceec6e761b90616f1d36340cabe840505ea3</citedby><cites>FETCH-LOGICAL-c666t-ea9eb99997ff6b234520ad3310062ceec6e761b90616f1d36340cabe840505ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911146/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911146/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27309381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bethge, Matthias</contributor><creatorcontrib>Thalmeier, Dominik</creatorcontrib><creatorcontrib>Uhlmann, Marvin</creatorcontrib><creatorcontrib>Kappen, Hilbert J</creatorcontrib><creatorcontrib>Memmesheimer, Raoul-Martin</creatorcontrib><title>Learning Universal Computations with Spikes</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity patterns, e.g. for locomotion. Many such computations require previous building of intrinsic world models. Here we show how spiking neural networks may solve these different tasks. Firstly, we derive constraints under which classes of spiking neural networks lend themselves to substrates of powerful general purpose computing. The networks contain dendritic or synaptic nonlinearities and have a constrained connectivity. We then combine such networks with learning rules for outputs or recurrent connections. We show that this allows to learn even difficult benchmark tasks such as the self-sustained generation of desired low-dimensional chaotic dynamics or memory-dependent computations. Furthermore, we show how spiking networks can build models of external world systems and use the acquired knowledge to control them.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Computational Biology</subject><subject>Computer and Information Sciences</subject><subject>Humans</subject><subject>Learning - physiology</subject><subject>Medicine and Health Sciences</subject><subject>Memory</subject><subject>Memory, Long-Term - physiology</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Noise</subject><subject>Nonlinear Dynamics</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Social Sciences</subject><subject>Standard deviation</subject><subject>Synaptic Transmission - physiology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl1rFDEUhgdRbK3-A9EFbxTZNZl83whl8WNhUbD2OiSZM9Oss5MxmantvzfbnZauCGJykUPyvG_OOZyieI7RAhOB323CGDvTLnpn_QIjRKViD4pjzBiZC8Lkw3vxUfEkpQ1COVT8cXFUCoIUkfi4eLsGEzvfNbPzzl9CTKadLcO2Hwcz-NCl2S8_XMzOev8D0tPiUW3aBM-m86Q4__jh-_LzfP3102p5up47zvkwB6PAqrxEXXNbEspKZCpCco68dACOg-DYKsQxr3FFOKHIGQuSIoYYGHJSvNz79m1IeqozaSwRo1xJTDKx2hNVMBvdR7818VoH4_XNRYiNNnHwrgXtSoaxoRwbQqitrRWEU4qsBIuUsS57vZ9-G-0WKgfdEE17YHr40vkL3YRLTRXGmPJs8HoyiOHnCGnQW58ctK3pIIw3eUsupCTlv1GhhBQCo12Jr_5A_96IxZ5qTK7Vd3XIKbq8K9h6Fzqofb4_pUIxVAqFs-DNgSAzA1wNjRlT0quzb__Bfjlk6Z51MaQUob5rIEZ6N6-36evdvOppXrPsxf3m34luB5T8BlAL5NY</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Thalmeier, Dominik</creator><creator>Uhlmann, Marvin</creator><creator>Kappen, Hilbert J</creator><creator>Memmesheimer, Raoul-Martin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160601</creationdate><title>Learning Universal Computations with Spikes</title><author>Thalmeier, Dominik ; Uhlmann, Marvin ; Kappen, Hilbert J ; Memmesheimer, Raoul-Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c666t-ea9eb99997ff6b234520ad3310062ceec6e761b90616f1d36340cabe840505ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Computational Biology</topic><topic>Computer and Information Sciences</topic><topic>Humans</topic><topic>Learning - physiology</topic><topic>Medicine and Health Sciences</topic><topic>Memory</topic><topic>Memory, Long-Term - physiology</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Noise</topic><topic>Nonlinear Dynamics</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Social Sciences</topic><topic>Standard deviation</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thalmeier, Dominik</creatorcontrib><creatorcontrib>Uhlmann, Marvin</creatorcontrib><creatorcontrib>Kappen, Hilbert J</creatorcontrib><creatorcontrib>Memmesheimer, Raoul-Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thalmeier, Dominik</au><au>Uhlmann, Marvin</au><au>Kappen, Hilbert J</au><au>Memmesheimer, Raoul-Martin</au><au>Bethge, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Universal Computations with Spikes</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>12</volume><issue>6</issue><spage>e1004895</spage><epage>e1004895</epage><pages>e1004895-e1004895</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity patterns, e.g. for locomotion. Many such computations require previous building of intrinsic world models. Here we show how spiking neural networks may solve these different tasks. Firstly, we derive constraints under which classes of spiking neural networks lend themselves to substrates of powerful general purpose computing. The networks contain dendritic or synaptic nonlinearities and have a constrained connectivity. We then combine such networks with learning rules for outputs or recurrent connections. We show that this allows to learn even difficult benchmark tasks such as the self-sustained generation of desired low-dimensional chaotic dynamics or memory-dependent computations. Furthermore, we show how spiking networks can build models of external world systems and use the acquired knowledge to control them.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27309381</pmid><doi>10.1371/journal.pcbi.1004895</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2016-06, Vol.12 (6), p.e1004895-e1004895
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1805469813
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Action Potentials - physiology
Animals
Biology and Life Sciences
Computational Biology
Computer and Information Sciences
Humans
Learning - physiology
Medicine and Health Sciences
Memory
Memory, Long-Term - physiology
Models, Neurological
Nerve Net - physiology
Neural circuitry
Neural networks
Neural Networks (Computer)
Neurons
Neurons - physiology
Noise
Nonlinear Dynamics
Physical Sciences
Physiological aspects
Social Sciences
Standard deviation
Synaptic Transmission - physiology
title Learning Universal Computations with Spikes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Universal%20Computations%20with%20Spikes&rft.jtitle=PLoS%20computational%20biology&rft.au=Thalmeier,%20Dominik&rft.date=2016-06-01&rft.volume=12&rft.issue=6&rft.spage=e1004895&rft.epage=e1004895&rft.pages=e1004895-e1004895&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004895&rft_dat=%3Cgale_plos_%3EA479502791%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1805469813&rft_id=info:pmid/27309381&rft_galeid=A479502791&rft_doaj_id=oai_doaj_org_article_c2511a461a334bfbb736440b8eb09abc&rfr_iscdi=true