Host-Imposed Copper Poisoning Impacts Fungal Micronutrient Acquisition during Systemic Candida albicans Infections

Nutritional immunity is a process whereby an infected host manipulates essential micronutrients to defend against an invading pathogen. We reveal a dynamic aspect of nutritional immunity during infection that involves copper assimilation. Using a combination of laser ablation inductively coupled mas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-06, Vol.11 (6), p.e0158683
Hauptverfasser: Mackie, Joanna, Szabo, Edina K, Urgast, Dagmar S, Ballou, Elizabeth R, Childers, Delma S, MacCallum, Donna M, Feldmann, Joerg, Brown, Alistair J P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e0158683
container_title PloS one
container_volume 11
creator Mackie, Joanna
Szabo, Edina K
Urgast, Dagmar S
Ballou, Elizabeth R
Childers, Delma S
MacCallum, Donna M
Feldmann, Joerg
Brown, Alistair J P
description Nutritional immunity is a process whereby an infected host manipulates essential micronutrients to defend against an invading pathogen. We reveal a dynamic aspect of nutritional immunity during infection that involves copper assimilation. Using a combination of laser ablation inductively coupled mass spectrometry (LA-ICP MS) and metal mapping, immunohistochemistry, and gene expression profiling from infected tissues, we show that readjustments in hepatic, splenic and renal copper homeostasis accompany disseminated Candida albicans infections in the mouse model. Localized host-imposed copper poisoning manifests itself as a transient increase in copper early in the kidney infection. Changes in renal copper are detected by the fungus, as revealed by gene expression profiling and fungal virulence studies. The fungus responds by differentially regulating the Crp1 copper efflux pump (higher expression during early infection and down-regulation late in infection) and the Ctr1 copper importer (lower expression during early infection, and subsequent up-regulation late in infection) to maintain copper homeostasis during disease progression. Both Crp1 and Ctr1 are required for full fungal virulence. Importantly, copper homeostasis influences other virulence traits-metabolic flexibility and oxidative stress resistance. Our study highlights the importance of copper homeostasis for host defence and fungal virulence during systemic disease.
doi_str_mv 10.1371/journal.pone.0158683
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1800708727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A471019178</galeid><doaj_id>oai_doaj_org_article_3f91aa938b784876b61d53a7304d1bb3</doaj_id><sourcerecordid>A471019178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-29b645cc7dc96e7b39b6b21cccc86ae1fb8a2f1cb6638d9ef8f8853ea12ffba3</originalsourceid><addsrcrecordid>eNqNk9Fu0zAUhiMEYqPwBggiISG4aIntxHZuJlUVY5WGhtjErWU7dusptTPbQeztcdpsatAuiC-S2N_5bf_nnCx7C4oFQAR8uXW9t7xddM6qRQEqiil6lp2CGsE5hgV6fvR9kr0K4bYoKkQxfpmdQIIwrCA8zfyFC3G-3nUuqCZfua5TPv_hTHDW2E2eFriMIT_v7Ya3-XcjvbN99EbZmC_lXW-CicbZvOn9wF_fh6h2RuYrbhvT8Jy3wkhuQ762WskBDa-zF5q3Qb0Z37Ps5vzrzepifnn1bb1aXs4lgVWcw1rgspKSNLLGigiU_gUEMj0UcwW0oBxqIAXGiDa10lRTWiHFAdRacDTL3h9ku9YFNroVGKBFQQpKkgWzbH0gGsdvWefNjvt75rhh-wnnN4z7aGSrGNI14LxGVBBaUoIFBk2FOEFF2QAhUNI6G3frxU41MvnjeTsRna5Ys2Ub95uVNaQUDYf5NAp4d9erENnOBKnallvl-v25KQEQVgP64R_06duNVEqcYsZql_aVgyhblgQUoAaEJmrxBJVGM6QxlZY2aX4S8HkSkJio_sQN70Ng6-uf_89e_ZqyH4_YreJt3AbX9vuSmYLlAUylGIJX-tFkULChMx7cYENnsLEzUti74wQ9Bj20AvoLhaALAQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800708727</pqid></control><display><type>article</type><title>Host-Imposed Copper Poisoning Impacts Fungal Micronutrient Acquisition during Systemic Candida albicans Infections</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mackie, Joanna ; Szabo, Edina K ; Urgast, Dagmar S ; Ballou, Elizabeth R ; Childers, Delma S ; MacCallum, Donna M ; Feldmann, Joerg ; Brown, Alistair J P</creator><contributor>Sturtevant, Joy</contributor><creatorcontrib>Mackie, Joanna ; Szabo, Edina K ; Urgast, Dagmar S ; Ballou, Elizabeth R ; Childers, Delma S ; MacCallum, Donna M ; Feldmann, Joerg ; Brown, Alistair J P ; Sturtevant, Joy</creatorcontrib><description>Nutritional immunity is a process whereby an infected host manipulates essential micronutrients to defend against an invading pathogen. We reveal a dynamic aspect of nutritional immunity during infection that involves copper assimilation. Using a combination of laser ablation inductively coupled mass spectrometry (LA-ICP MS) and metal mapping, immunohistochemistry, and gene expression profiling from infected tissues, we show that readjustments in hepatic, splenic and renal copper homeostasis accompany disseminated Candida albicans infections in the mouse model. Localized host-imposed copper poisoning manifests itself as a transient increase in copper early in the kidney infection. Changes in renal copper are detected by the fungus, as revealed by gene expression profiling and fungal virulence studies. The fungus responds by differentially regulating the Crp1 copper efflux pump (higher expression during early infection and down-regulation late in infection) and the Ctr1 copper importer (lower expression during early infection, and subsequent up-regulation late in infection) to maintain copper homeostasis during disease progression. Both Crp1 and Ctr1 are required for full fungal virulence. Importantly, copper homeostasis influences other virulence traits-metabolic flexibility and oxidative stress resistance. Our study highlights the importance of copper homeostasis for host defence and fungal virulence during systemic disease.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0158683</identifier><identifier>PMID: 27362522</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Ablation ; Animals ; Biology and Life Sciences ; Candida albicans ; Candida albicans - genetics ; Candidiasis - microbiology ; Carbon ; Copper ; Copper - metabolism ; Copper - poisoning ; Disease Models, Animal ; Disease Progression ; Efflux ; Fungal Proteins - genetics ; Fungi ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Fungal ; Gene mapping ; Homeostasis ; Immunity ; Immunohistochemistry ; Infections ; Kidney - metabolism ; Kidney diseases ; Kidneys ; Laboratories ; Laser ablation ; Liver - metabolism ; Mass Spectrometry ; Mass spectroscopy ; Medicine ; Medicine and Health Sciences ; Metabolism ; Mice ; Micronutrients ; Nutrition ; Oxidation resistance ; Oxidative Stress ; Physical Sciences ; Poisoning ; Profiling ; Research and Analysis Methods ; Science ; Spleen ; Spleen - metabolism ; Trace elements ; Virulence ; Yeast</subject><ispartof>PloS one, 2016-06, Vol.11 (6), p.e0158683</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Mackie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Mackie et al 2016 Mackie et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-29b645cc7dc96e7b39b6b21cccc86ae1fb8a2f1cb6638d9ef8f8853ea12ffba3</citedby><cites>FETCH-LOGICAL-c725t-29b645cc7dc96e7b39b6b21cccc86ae1fb8a2f1cb6638d9ef8f8853ea12ffba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4928837/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4928837/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27362522$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sturtevant, Joy</contributor><creatorcontrib>Mackie, Joanna</creatorcontrib><creatorcontrib>Szabo, Edina K</creatorcontrib><creatorcontrib>Urgast, Dagmar S</creatorcontrib><creatorcontrib>Ballou, Elizabeth R</creatorcontrib><creatorcontrib>Childers, Delma S</creatorcontrib><creatorcontrib>MacCallum, Donna M</creatorcontrib><creatorcontrib>Feldmann, Joerg</creatorcontrib><creatorcontrib>Brown, Alistair J P</creatorcontrib><title>Host-Imposed Copper Poisoning Impacts Fungal Micronutrient Acquisition during Systemic Candida albicans Infections</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Nutritional immunity is a process whereby an infected host manipulates essential micronutrients to defend against an invading pathogen. We reveal a dynamic aspect of nutritional immunity during infection that involves copper assimilation. Using a combination of laser ablation inductively coupled mass spectrometry (LA-ICP MS) and metal mapping, immunohistochemistry, and gene expression profiling from infected tissues, we show that readjustments in hepatic, splenic and renal copper homeostasis accompany disseminated Candida albicans infections in the mouse model. Localized host-imposed copper poisoning manifests itself as a transient increase in copper early in the kidney infection. Changes in renal copper are detected by the fungus, as revealed by gene expression profiling and fungal virulence studies. The fungus responds by differentially regulating the Crp1 copper efflux pump (higher expression during early infection and down-regulation late in infection) and the Ctr1 copper importer (lower expression during early infection, and subsequent up-regulation late in infection) to maintain copper homeostasis during disease progression. Both Crp1 and Ctr1 are required for full fungal virulence. Importantly, copper homeostasis influences other virulence traits-metabolic flexibility and oxidative stress resistance. Our study highlights the importance of copper homeostasis for host defence and fungal virulence during systemic disease.</description><subject>Ablation</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Candida albicans</subject><subject>Candida albicans - genetics</subject><subject>Candidiasis - microbiology</subject><subject>Carbon</subject><subject>Copper</subject><subject>Copper - metabolism</subject><subject>Copper - poisoning</subject><subject>Disease Models, Animal</subject><subject>Disease Progression</subject><subject>Efflux</subject><subject>Fungal Proteins - genetics</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene mapping</subject><subject>Homeostasis</subject><subject>Immunity</subject><subject>Immunohistochemistry</subject><subject>Infections</subject><subject>Kidney - metabolism</subject><subject>Kidney diseases</subject><subject>Kidneys</subject><subject>Laboratories</subject><subject>Laser ablation</subject><subject>Liver - metabolism</subject><subject>Mass Spectrometry</subject><subject>Mass spectroscopy</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Micronutrients</subject><subject>Nutrition</subject><subject>Oxidation resistance</subject><subject>Oxidative Stress</subject><subject>Physical Sciences</subject><subject>Poisoning</subject><subject>Profiling</subject><subject>Research and Analysis Methods</subject><subject>Science</subject><subject>Spleen</subject><subject>Spleen - metabolism</subject><subject>Trace elements</subject><subject>Virulence</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9Fu0zAUhiMEYqPwBggiISG4aIntxHZuJlUVY5WGhtjErWU7dusptTPbQeztcdpsatAuiC-S2N_5bf_nnCx7C4oFQAR8uXW9t7xddM6qRQEqiil6lp2CGsE5hgV6fvR9kr0K4bYoKkQxfpmdQIIwrCA8zfyFC3G-3nUuqCZfua5TPv_hTHDW2E2eFriMIT_v7Ya3-XcjvbN99EbZmC_lXW-CicbZvOn9wF_fh6h2RuYrbhvT8Jy3wkhuQ762WskBDa-zF5q3Qb0Z37Ps5vzrzepifnn1bb1aXs4lgVWcw1rgspKSNLLGigiU_gUEMj0UcwW0oBxqIAXGiDa10lRTWiHFAdRacDTL3h9ku9YFNroVGKBFQQpKkgWzbH0gGsdvWefNjvt75rhh-wnnN4z7aGSrGNI14LxGVBBaUoIFBk2FOEFF2QAhUNI6G3frxU41MvnjeTsRna5Ys2Ub95uVNaQUDYf5NAp4d9erENnOBKnallvl-v25KQEQVgP64R_06duNVEqcYsZql_aVgyhblgQUoAaEJmrxBJVGM6QxlZY2aX4S8HkSkJio_sQN70Ng6-uf_89e_ZqyH4_YreJt3AbX9vuSmYLlAUylGIJX-tFkULChMx7cYENnsLEzUti74wQ9Bj20AvoLhaALAQ</recordid><startdate>20160630</startdate><enddate>20160630</enddate><creator>Mackie, Joanna</creator><creator>Szabo, Edina K</creator><creator>Urgast, Dagmar S</creator><creator>Ballou, Elizabeth R</creator><creator>Childers, Delma S</creator><creator>MacCallum, Donna M</creator><creator>Feldmann, Joerg</creator><creator>Brown, Alistair J P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160630</creationdate><title>Host-Imposed Copper Poisoning Impacts Fungal Micronutrient Acquisition during Systemic Candida albicans Infections</title><author>Mackie, Joanna ; Szabo, Edina K ; Urgast, Dagmar S ; Ballou, Elizabeth R ; Childers, Delma S ; MacCallum, Donna M ; Feldmann, Joerg ; Brown, Alistair J P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-29b645cc7dc96e7b39b6b21cccc86ae1fb8a2f1cb6638d9ef8f8853ea12ffba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Ablation</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Candida albicans</topic><topic>Candida albicans - genetics</topic><topic>Candidiasis - microbiology</topic><topic>Carbon</topic><topic>Copper</topic><topic>Copper - metabolism</topic><topic>Copper - poisoning</topic><topic>Disease Models, Animal</topic><topic>Disease Progression</topic><topic>Efflux</topic><topic>Fungal Proteins - genetics</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene mapping</topic><topic>Homeostasis</topic><topic>Immunity</topic><topic>Immunohistochemistry</topic><topic>Infections</topic><topic>Kidney - metabolism</topic><topic>Kidney diseases</topic><topic>Kidneys</topic><topic>Laboratories</topic><topic>Laser ablation</topic><topic>Liver - metabolism</topic><topic>Mass Spectrometry</topic><topic>Mass spectroscopy</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Micronutrients</topic><topic>Nutrition</topic><topic>Oxidation resistance</topic><topic>Oxidative Stress</topic><topic>Physical Sciences</topic><topic>Poisoning</topic><topic>Profiling</topic><topic>Research and Analysis Methods</topic><topic>Science</topic><topic>Spleen</topic><topic>Spleen - metabolism</topic><topic>Trace elements</topic><topic>Virulence</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mackie, Joanna</creatorcontrib><creatorcontrib>Szabo, Edina K</creatorcontrib><creatorcontrib>Urgast, Dagmar S</creatorcontrib><creatorcontrib>Ballou, Elizabeth R</creatorcontrib><creatorcontrib>Childers, Delma S</creatorcontrib><creatorcontrib>MacCallum, Donna M</creatorcontrib><creatorcontrib>Feldmann, Joerg</creatorcontrib><creatorcontrib>Brown, Alistair J P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mackie, Joanna</au><au>Szabo, Edina K</au><au>Urgast, Dagmar S</au><au>Ballou, Elizabeth R</au><au>Childers, Delma S</au><au>MacCallum, Donna M</au><au>Feldmann, Joerg</au><au>Brown, Alistair J P</au><au>Sturtevant, Joy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Host-Imposed Copper Poisoning Impacts Fungal Micronutrient Acquisition during Systemic Candida albicans Infections</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-06-30</date><risdate>2016</risdate><volume>11</volume><issue>6</issue><spage>e0158683</spage><pages>e0158683-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Nutritional immunity is a process whereby an infected host manipulates essential micronutrients to defend against an invading pathogen. We reveal a dynamic aspect of nutritional immunity during infection that involves copper assimilation. Using a combination of laser ablation inductively coupled mass spectrometry (LA-ICP MS) and metal mapping, immunohistochemistry, and gene expression profiling from infected tissues, we show that readjustments in hepatic, splenic and renal copper homeostasis accompany disseminated Candida albicans infections in the mouse model. Localized host-imposed copper poisoning manifests itself as a transient increase in copper early in the kidney infection. Changes in renal copper are detected by the fungus, as revealed by gene expression profiling and fungal virulence studies. The fungus responds by differentially regulating the Crp1 copper efflux pump (higher expression during early infection and down-regulation late in infection) and the Ctr1 copper importer (lower expression during early infection, and subsequent up-regulation late in infection) to maintain copper homeostasis during disease progression. Both Crp1 and Ctr1 are required for full fungal virulence. Importantly, copper homeostasis influences other virulence traits-metabolic flexibility and oxidative stress resistance. Our study highlights the importance of copper homeostasis for host defence and fungal virulence during systemic disease.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27362522</pmid><doi>10.1371/journal.pone.0158683</doi><tpages>e0158683</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-06, Vol.11 (6), p.e0158683
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1800708727
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Ablation
Animals
Biology and Life Sciences
Candida albicans
Candida albicans - genetics
Candidiasis - microbiology
Carbon
Copper
Copper - metabolism
Copper - poisoning
Disease Models, Animal
Disease Progression
Efflux
Fungal Proteins - genetics
Fungi
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Fungal
Gene mapping
Homeostasis
Immunity
Immunohistochemistry
Infections
Kidney - metabolism
Kidney diseases
Kidneys
Laboratories
Laser ablation
Liver - metabolism
Mass Spectrometry
Mass spectroscopy
Medicine
Medicine and Health Sciences
Metabolism
Mice
Micronutrients
Nutrition
Oxidation resistance
Oxidative Stress
Physical Sciences
Poisoning
Profiling
Research and Analysis Methods
Science
Spleen
Spleen - metabolism
Trace elements
Virulence
Yeast
title Host-Imposed Copper Poisoning Impacts Fungal Micronutrient Acquisition during Systemic Candida albicans Infections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T01%3A57%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Host-Imposed%20Copper%20Poisoning%20Impacts%20Fungal%20Micronutrient%20Acquisition%20during%20Systemic%20Candida%20albicans%20Infections&rft.jtitle=PloS%20one&rft.au=Mackie,%20Joanna&rft.date=2016-06-30&rft.volume=11&rft.issue=6&rft.spage=e0158683&rft.pages=e0158683-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0158683&rft_dat=%3Cgale_plos_%3EA471019178%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800708727&rft_id=info:pmid/27362522&rft_galeid=A471019178&rft_doaj_id=oai_doaj_org_article_3f91aa938b784876b61d53a7304d1bb3&rfr_iscdi=true