An Improved Wavelet Packet-Chaos Model for Life Prediction of Space Relays Based on Volterra Series

In this paper, an improved algorithm of wavelet packet-chaos model for life prediction of space relays based on volterra series is proposed. In the proposed method, the high and low frequency time sequence components of performance parameters are obtained by employing the improved wavelet packet tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-06, Vol.11 (6), p.e0158435-e0158435
Hauptverfasser: Li, Lingling, Han, Ye, Chen, Wenyuan, Lv, Congmin, Sun, Dongwang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0158435
container_issue 6
container_start_page e0158435
container_title PloS one
container_volume 11
creator Li, Lingling
Han, Ye
Chen, Wenyuan
Lv, Congmin
Sun, Dongwang
description In this paper, an improved algorithm of wavelet packet-chaos model for life prediction of space relays based on volterra series is proposed. In the proposed method, the high and low frequency time sequence components of performance parameters are obtained by employing the improved wavelet packet transform to decompose the performance parameters of the relay into multiple scales. Then the optimization algorithm of parameters in volterra series is improved, and is used to construct a chaotic forecasting model for the high and low frequency time sequence components gained by the wavelet packet transform. At last, the chaotic forecasting results of the high and low frequency components are combined by taking the wavelet packet reconstruction approach, so as to predict the lifetime of the studied space relay. The algorithm can predict the life curve of the relay accurately and reflect the characteristics of the relay performance with sufficient accuracy. The proposed method is validated via a case study of a space relay.
doi_str_mv 10.1371/journal.pone.0158435
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1800414374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A456545481</galeid><doaj_id>oai_doaj_org_article_3d4e610e21ed48afae3bb1a040844653</doaj_id><sourcerecordid>A456545481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-ef1e2032fc65e042b4a04ccea58a79b50929435160b3525792107aca34d5a4a93</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBYQkJw0WLHdj5ukErFR6WiTSuMS-vEOWlT3LjYScX-Pc6aTS3axeQLW_ZzXr_n2CeKXjI6ZjxlH9a2cw2Y8dY2OKZMZoLLR9Epy3k8SmLKHx-sT6Jn3q8plTxLkqfRSZxyKWWanUZ60pDZZuvsDkvyC3ZosCUXoH9jO5quwHry3ZZoSGUdmdcVkguHZa3b2jbEVmSxBY3kEg1ce_IJfBAJB1fWtOgckAW6Gv3z6EkFxuOLYT6Lfn75_GP6bTQ__zqbTuYjncayHWHFMHiNK51IpCIuBFChNYLMIM0LSfM4DzmyhBZcxjLNY0ZT0MBFKUFAzs-i13vdrbFeDfXximWUCiZ4KgIx2xOlhbXaunoD7lpZqNXNhnVLBa6ttUHFS4EJoxgzLEUGFSAvChYc0UyIRPKg9XG4rSs2WGpsWgfmSPT4pKlXaml3SuRxyiQLAu8GAWf_dOhbtam9RmOgQdvd-M5SHudJ-hA0JJhT2RfhzX_o_YUYqCWEXOumssGi7kXVRMhECimy3uH4HiqMEje1Dv-uqsP-UcD7o4DAtPi3XULnvZotLh_Onl8ds28P2BWCaVfemq7_hv4YFHtQO-u9w-ruPRhVfdvcVkP1baOGtglhrw7f8i7otk_4P134D4w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800414374</pqid></control><display><type>article</type><title>An Improved Wavelet Packet-Chaos Model for Life Prediction of Space Relays Based on Volterra Series</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Lingling ; Han, Ye ; Chen, Wenyuan ; Lv, Congmin ; Sun, Dongwang</creator><contributor>Wang, Yuanquan</contributor><creatorcontrib>Li, Lingling ; Han, Ye ; Chen, Wenyuan ; Lv, Congmin ; Sun, Dongwang ; Wang, Yuanquan</creatorcontrib><description>In this paper, an improved algorithm of wavelet packet-chaos model for life prediction of space relays based on volterra series is proposed. In the proposed method, the high and low frequency time sequence components of performance parameters are obtained by employing the improved wavelet packet transform to decompose the performance parameters of the relay into multiple scales. Then the optimization algorithm of parameters in volterra series is improved, and is used to construct a chaotic forecasting model for the high and low frequency time sequence components gained by the wavelet packet transform. At last, the chaotic forecasting results of the high and low frequency components are combined by taking the wavelet packet reconstruction approach, so as to predict the lifetime of the studied space relay. The algorithm can predict the life curve of the relay accurately and reflect the characteristics of the relay performance with sufficient accuracy. The proposed method is validated via a case study of a space relay.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0158435</identifier><identifier>PMID: 27355578</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Automation ; Computer and Information Sciences ; Decomposition ; Electrical engineering ; Extraterrestrial Environment ; Forecasting ; International conferences ; Life prediction ; Low frequencies ; Mathematical models ; Methods ; Models, Theoretical ; Nonlinear Dynamics ; Optimization ; Optimization theory ; Parameters ; Physical Sciences ; Quality of life ; Relay ; Reproducibility of Results ; Research and Analysis Methods ; Signal processing ; Signal Processing, Computer-Assisted ; Software engineering ; Statistics as Topic ; Time series ; Wavelet Analysis ; Wavelet transforms</subject><ispartof>PloS one, 2016-06, Vol.11 (6), p.e0158435-e0158435</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Li et al 2016 Li et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-ef1e2032fc65e042b4a04ccea58a79b50929435160b3525792107aca34d5a4a93</citedby><cites>FETCH-LOGICAL-c725t-ef1e2032fc65e042b4a04ccea58a79b50929435160b3525792107aca34d5a4a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4927151/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4927151/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27355578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wang, Yuanquan</contributor><creatorcontrib>Li, Lingling</creatorcontrib><creatorcontrib>Han, Ye</creatorcontrib><creatorcontrib>Chen, Wenyuan</creatorcontrib><creatorcontrib>Lv, Congmin</creatorcontrib><creatorcontrib>Sun, Dongwang</creatorcontrib><title>An Improved Wavelet Packet-Chaos Model for Life Prediction of Space Relays Based on Volterra Series</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In this paper, an improved algorithm of wavelet packet-chaos model for life prediction of space relays based on volterra series is proposed. In the proposed method, the high and low frequency time sequence components of performance parameters are obtained by employing the improved wavelet packet transform to decompose the performance parameters of the relay into multiple scales. Then the optimization algorithm of parameters in volterra series is improved, and is used to construct a chaotic forecasting model for the high and low frequency time sequence components gained by the wavelet packet transform. At last, the chaotic forecasting results of the high and low frequency components are combined by taking the wavelet packet reconstruction approach, so as to predict the lifetime of the studied space relay. The algorithm can predict the life curve of the relay accurately and reflect the characteristics of the relay performance with sufficient accuracy. The proposed method is validated via a case study of a space relay.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Automation</subject><subject>Computer and Information Sciences</subject><subject>Decomposition</subject><subject>Electrical engineering</subject><subject>Extraterrestrial Environment</subject><subject>Forecasting</subject><subject>International conferences</subject><subject>Life prediction</subject><subject>Low frequencies</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Nonlinear Dynamics</subject><subject>Optimization</subject><subject>Optimization theory</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Quality of life</subject><subject>Relay</subject><subject>Reproducibility of Results</subject><subject>Research and Analysis Methods</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Software engineering</subject><subject>Statistics as Topic</subject><subject>Time series</subject><subject>Wavelet Analysis</subject><subject>Wavelet transforms</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBYQkJw0WLHdj5ukErFR6WiTSuMS-vEOWlT3LjYScX-Pc6aTS3axeQLW_ZzXr_n2CeKXjI6ZjxlH9a2cw2Y8dY2OKZMZoLLR9Epy3k8SmLKHx-sT6Jn3q8plTxLkqfRSZxyKWWanUZ60pDZZuvsDkvyC3ZosCUXoH9jO5quwHry3ZZoSGUdmdcVkguHZa3b2jbEVmSxBY3kEg1ce_IJfBAJB1fWtOgckAW6Gv3z6EkFxuOLYT6Lfn75_GP6bTQ__zqbTuYjncayHWHFMHiNK51IpCIuBFChNYLMIM0LSfM4DzmyhBZcxjLNY0ZT0MBFKUFAzs-i13vdrbFeDfXximWUCiZ4KgIx2xOlhbXaunoD7lpZqNXNhnVLBa6ttUHFS4EJoxgzLEUGFSAvChYc0UyIRPKg9XG4rSs2WGpsWgfmSPT4pKlXaml3SuRxyiQLAu8GAWf_dOhbtam9RmOgQdvd-M5SHudJ-hA0JJhT2RfhzX_o_YUYqCWEXOumssGi7kXVRMhECimy3uH4HiqMEje1Dv-uqsP-UcD7o4DAtPi3XULnvZotLh_Onl8ds28P2BWCaVfemq7_hv4YFHtQO-u9w-ruPRhVfdvcVkP1baOGtglhrw7f8i7otk_4P134D4w</recordid><startdate>20160629</startdate><enddate>20160629</enddate><creator>Li, Lingling</creator><creator>Han, Ye</creator><creator>Chen, Wenyuan</creator><creator>Lv, Congmin</creator><creator>Sun, Dongwang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160629</creationdate><title>An Improved Wavelet Packet-Chaos Model for Life Prediction of Space Relays Based on Volterra Series</title><author>Li, Lingling ; Han, Ye ; Chen, Wenyuan ; Lv, Congmin ; Sun, Dongwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-ef1e2032fc65e042b4a04ccea58a79b50929435160b3525792107aca34d5a4a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Automation</topic><topic>Computer and Information Sciences</topic><topic>Decomposition</topic><topic>Electrical engineering</topic><topic>Extraterrestrial Environment</topic><topic>Forecasting</topic><topic>International conferences</topic><topic>Life prediction</topic><topic>Low frequencies</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Nonlinear Dynamics</topic><topic>Optimization</topic><topic>Optimization theory</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Quality of life</topic><topic>Relay</topic><topic>Reproducibility of Results</topic><topic>Research and Analysis Methods</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Software engineering</topic><topic>Statistics as Topic</topic><topic>Time series</topic><topic>Wavelet Analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lingling</creatorcontrib><creatorcontrib>Han, Ye</creatorcontrib><creatorcontrib>Chen, Wenyuan</creatorcontrib><creatorcontrib>Lv, Congmin</creatorcontrib><creatorcontrib>Sun, Dongwang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lingling</au><au>Han, Ye</au><au>Chen, Wenyuan</au><au>Lv, Congmin</au><au>Sun, Dongwang</au><au>Wang, Yuanquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Wavelet Packet-Chaos Model for Life Prediction of Space Relays Based on Volterra Series</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-06-29</date><risdate>2016</risdate><volume>11</volume><issue>6</issue><spage>e0158435</spage><epage>e0158435</epage><pages>e0158435-e0158435</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In this paper, an improved algorithm of wavelet packet-chaos model for life prediction of space relays based on volterra series is proposed. In the proposed method, the high and low frequency time sequence components of performance parameters are obtained by employing the improved wavelet packet transform to decompose the performance parameters of the relay into multiple scales. Then the optimization algorithm of parameters in volterra series is improved, and is used to construct a chaotic forecasting model for the high and low frequency time sequence components gained by the wavelet packet transform. At last, the chaotic forecasting results of the high and low frequency components are combined by taking the wavelet packet reconstruction approach, so as to predict the lifetime of the studied space relay. The algorithm can predict the life curve of the relay accurately and reflect the characteristics of the relay performance with sufficient accuracy. The proposed method is validated via a case study of a space relay.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27355578</pmid><doi>10.1371/journal.pone.0158435</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-06, Vol.11 (6), p.e0158435-e0158435
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1800414374
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Analysis
Automation
Computer and Information Sciences
Decomposition
Electrical engineering
Extraterrestrial Environment
Forecasting
International conferences
Life prediction
Low frequencies
Mathematical models
Methods
Models, Theoretical
Nonlinear Dynamics
Optimization
Optimization theory
Parameters
Physical Sciences
Quality of life
Relay
Reproducibility of Results
Research and Analysis Methods
Signal processing
Signal Processing, Computer-Assisted
Software engineering
Statistics as Topic
Time series
Wavelet Analysis
Wavelet transforms
title An Improved Wavelet Packet-Chaos Model for Life Prediction of Space Relays Based on Volterra Series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Wavelet%20Packet-Chaos%20Model%20for%20Life%20Prediction%20of%20Space%20Relays%20Based%20on%20Volterra%20Series&rft.jtitle=PloS%20one&rft.au=Li,%20Lingling&rft.date=2016-06-29&rft.volume=11&rft.issue=6&rft.spage=e0158435&rft.epage=e0158435&rft.pages=e0158435-e0158435&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0158435&rft_dat=%3Cgale_plos_%3EA456545481%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800414374&rft_id=info:pmid/27355578&rft_galeid=A456545481&rft_doaj_id=oai_doaj_org_article_3d4e610e21ed48afae3bb1a040844653&rfr_iscdi=true