Additive Expression of Consolidated Memory through Drosophila Mushroom Body Subsets

Associative olfactory memory in Drosophila has two components called labile anesthesia-sensitive memory and consolidated anesthesia-resistant memory (ARM). Mushroom body (MB) is a brain region critical for the olfactory memory and comprised of 2000 neurons that can be classified into αβ, α'β�...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2016-05, Vol.12 (5), p.e1006061-e1006061
Hauptverfasser: Yang, Chu-Huai, Shih, Meng-Fu Maxwell, Chang, Ching-Ching, Chiang, Meng-Hsuan, Shih, Hsiang-Wen, Tsai, Ya-Lun, Chiang, Ann-Shyn, Fu, Tsai-Feng, Wu, Chia-Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1006061
container_issue 5
container_start_page e1006061
container_title PLoS genetics
container_volume 12
creator Yang, Chu-Huai
Shih, Meng-Fu Maxwell
Chang, Ching-Ching
Chiang, Meng-Hsuan
Shih, Hsiang-Wen
Tsai, Ya-Lun
Chiang, Ann-Shyn
Fu, Tsai-Feng
Wu, Chia-Lin
description Associative olfactory memory in Drosophila has two components called labile anesthesia-sensitive memory and consolidated anesthesia-resistant memory (ARM). Mushroom body (MB) is a brain region critical for the olfactory memory and comprised of 2000 neurons that can be classified into αβ, α'β', and γ neurons. Previously we demonstrated that two parallel pathways mediated ARM consolidation: the serotonergic dorsal paired medial (DPM)-αβ neurons and the octopaminergic anterior paired lateral (APL)-α'β' neurons. This finding prompted us to ask how this composite ARM is retrieved. Here, we showed that blocking the output of αβ neurons and that of α'β' neurons each impaired ARM retrieval, and blocking both simultaneously had an additive effect. Knockdown of radish and octβ2R in αβ and α'β' neurons, respectively, impaired ARM. A combinatorial assay of radish mutant background rsh1 and neurotransmission blockade confirmed that ARM retrieved from α'β' neuron output is independent of radish. We identified MBON-β2β'2a and MBON-β'2mp as the MB output neurons downstream of αβ and α'β' neurons, respectively, whose glutamatergic transmissions also additively contribute to ARM retrieval. Finally, we showed that α'β' neurons could be functionally subdivided into α'β'm neurons required for ARM retrieval, and α'β'ap neurons required for ARM consolidation. Our work demonstrated that two parallel neural pathways mediating ARM consolidation in Drosophila MB additively contribute to ARM expression during retrieval.
doi_str_mv 10.1371/journal.pgen.1006061
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1797505969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A479526934</galeid><doaj_id>oai_doaj_org_article_a1a3cec9bdfa4465bfa74fce494045fe</doaj_id><sourcerecordid>A479526934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c825t-459e917834436bab51a1c836fcf2f2de2bde725d125d3db66b21eb1594e453563</originalsourceid><addsrcrecordid>eNqVk1GL1DAQx4so3nn6DUQLgujDrkmTNM3LwXqeunDngau-hrSZtlnaZk3a4_bbm3V7x1YOVEJImPzmn8lkJoqeYzTHhON3azu4TjXzTQXdHCOUohQ_iI4xY2TGKaIPD_ZH0RPv1wgRlgn-ODpKOBaMZ8lxtFpobXpzDfH5zcaB98Z2sS3jM9t52xitetDxJbTWbeO-dnao6viDs95uatOo-HLwwWjb-L3V23g15B56_zR6VKrGw7NxPYm-fzz_dvZ5dnH1aXm2uJgVWcL6GWUCBOYZoZSkucoZVrjISFoWZVImGpJcA0-YxmESnadpnmDIMRMUKCMsJSfRy73uprFejvnwEnPBGWIiFYFY7glt1VpunGmV20qrjPxtsK6SyvWmaEAqrEgBhch1qShNWV4qTssCqAj5YyUErdPxtiFvQRfQ9U41E9HpSWdqWdlrSTNOEoqCwJtRwNmfA_hetsYX0DSqAzuEuDOUpUQkNPs7ygWiKSIZDuirP9D7EzFSlQpvNV1pQ4jFTlQuKBcsCQwN1PweKgwNrSlsB6UJ9onD24lDYHq46Ss1eC-Xq6__wX75d_bqx5R9fcDWoJq-DqU79KGS_RSke7AI9esdlHd_h5HctdRt5uSupeTYUsHtxeG_3znd9hD5BYNVGwU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797505969</pqid></control><display><type>article</type><title>Additive Expression of Consolidated Memory through Drosophila Mushroom Body Subsets</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Yang, Chu-Huai ; Shih, Meng-Fu Maxwell ; Chang, Ching-Ching ; Chiang, Meng-Hsuan ; Shih, Hsiang-Wen ; Tsai, Ya-Lun ; Chiang, Ann-Shyn ; Fu, Tsai-Feng ; Wu, Chia-Lin</creator><contributor>Schoofs, Liliane</contributor><creatorcontrib>Yang, Chu-Huai ; Shih, Meng-Fu Maxwell ; Chang, Ching-Ching ; Chiang, Meng-Hsuan ; Shih, Hsiang-Wen ; Tsai, Ya-Lun ; Chiang, Ann-Shyn ; Fu, Tsai-Feng ; Wu, Chia-Lin ; Schoofs, Liliane</creatorcontrib><description>Associative olfactory memory in Drosophila has two components called labile anesthesia-sensitive memory and consolidated anesthesia-resistant memory (ARM). Mushroom body (MB) is a brain region critical for the olfactory memory and comprised of 2000 neurons that can be classified into αβ, α'β', and γ neurons. Previously we demonstrated that two parallel pathways mediated ARM consolidation: the serotonergic dorsal paired medial (DPM)-αβ neurons and the octopaminergic anterior paired lateral (APL)-α'β' neurons. This finding prompted us to ask how this composite ARM is retrieved. Here, we showed that blocking the output of αβ neurons and that of α'β' neurons each impaired ARM retrieval, and blocking both simultaneously had an additive effect. Knockdown of radish and octβ2R in αβ and α'β' neurons, respectively, impaired ARM. A combinatorial assay of radish mutant background rsh1 and neurotransmission blockade confirmed that ARM retrieved from α'β' neuron output is independent of radish. We identified MBON-β2β'2a and MBON-β'2mp as the MB output neurons downstream of αβ and α'β' neurons, respectively, whose glutamatergic transmissions also additively contribute to ARM retrieval. Finally, we showed that α'β' neurons could be functionally subdivided into α'β'm neurons required for ARM retrieval, and α'β'ap neurons required for ARM consolidation. Our work demonstrated that two parallel neural pathways mediating ARM consolidation in Drosophila MB additively contribute to ARM expression during retrieval.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1006061</identifier><identifier>PMID: 27195782</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anesthesia - adverse effects ; Animals ; Animals, Genetically Modified ; Biology and Life Sciences ; Drosophila ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Experiments ; Gene expression ; Gene Knockdown Techniques ; Genetic aspects ; Insects ; Memory ; Memory - drug effects ; Mushroom Bodies - drug effects ; Mushroom Bodies - metabolism ; Neurons ; Neurons - drug effects ; Neurons - metabolism ; Observations ; Olfactory Cortex - metabolism ; Phosphoproteins - genetics ; Receptors, G-Protein-Coupled - genetics ; Research and Analysis Methods ; Smell - genetics ; Smell - physiology ; Synaptic Transmission - drug effects ; Synaptic Transmission - genetics</subject><ispartof>PLoS genetics, 2016-05, Vol.12 (5), p.e1006061-e1006061</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Mushroom Body Subsets. PLoS Genet 12(5): e1006061. doi:10.1371/journal.pgen.1006061</rights><rights>2016 Yang et al 2016 Yang et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Mushroom Body Subsets. PLoS Genet 12(5): e1006061. doi:10.1371/journal.pgen.1006061</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c825t-459e917834436bab51a1c836fcf2f2de2bde725d125d3db66b21eb1594e453563</citedby><cites>FETCH-LOGICAL-c825t-459e917834436bab51a1c836fcf2f2de2bde725d125d3db66b21eb1594e453563</cites><orcidid>0000-0002-2976-9054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873240/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873240/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79472,79473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27195782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schoofs, Liliane</contributor><creatorcontrib>Yang, Chu-Huai</creatorcontrib><creatorcontrib>Shih, Meng-Fu Maxwell</creatorcontrib><creatorcontrib>Chang, Ching-Ching</creatorcontrib><creatorcontrib>Chiang, Meng-Hsuan</creatorcontrib><creatorcontrib>Shih, Hsiang-Wen</creatorcontrib><creatorcontrib>Tsai, Ya-Lun</creatorcontrib><creatorcontrib>Chiang, Ann-Shyn</creatorcontrib><creatorcontrib>Fu, Tsai-Feng</creatorcontrib><creatorcontrib>Wu, Chia-Lin</creatorcontrib><title>Additive Expression of Consolidated Memory through Drosophila Mushroom Body Subsets</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Associative olfactory memory in Drosophila has two components called labile anesthesia-sensitive memory and consolidated anesthesia-resistant memory (ARM). Mushroom body (MB) is a brain region critical for the olfactory memory and comprised of 2000 neurons that can be classified into αβ, α'β', and γ neurons. Previously we demonstrated that two parallel pathways mediated ARM consolidation: the serotonergic dorsal paired medial (DPM)-αβ neurons and the octopaminergic anterior paired lateral (APL)-α'β' neurons. This finding prompted us to ask how this composite ARM is retrieved. Here, we showed that blocking the output of αβ neurons and that of α'β' neurons each impaired ARM retrieval, and blocking both simultaneously had an additive effect. Knockdown of radish and octβ2R in αβ and α'β' neurons, respectively, impaired ARM. A combinatorial assay of radish mutant background rsh1 and neurotransmission blockade confirmed that ARM retrieved from α'β' neuron output is independent of radish. We identified MBON-β2β'2a and MBON-β'2mp as the MB output neurons downstream of αβ and α'β' neurons, respectively, whose glutamatergic transmissions also additively contribute to ARM retrieval. Finally, we showed that α'β' neurons could be functionally subdivided into α'β'm neurons required for ARM retrieval, and α'β'ap neurons required for ARM consolidation. Our work demonstrated that two parallel neural pathways mediating ARM consolidation in Drosophila MB additively contribute to ARM expression during retrieval.</description><subject>Anesthesia - adverse effects</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Biology and Life Sciences</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Gene Knockdown Techniques</subject><subject>Genetic aspects</subject><subject>Insects</subject><subject>Memory</subject><subject>Memory - drug effects</subject><subject>Mushroom Bodies - drug effects</subject><subject>Mushroom Bodies - metabolism</subject><subject>Neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Observations</subject><subject>Olfactory Cortex - metabolism</subject><subject>Phosphoproteins - genetics</subject><subject>Receptors, G-Protein-Coupled - genetics</subject><subject>Research and Analysis Methods</subject><subject>Smell - genetics</subject><subject>Smell - physiology</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1GL1DAQx4so3nn6DUQLgujDrkmTNM3LwXqeunDngau-hrSZtlnaZk3a4_bbm3V7x1YOVEJImPzmn8lkJoqeYzTHhON3azu4TjXzTQXdHCOUohQ_iI4xY2TGKaIPD_ZH0RPv1wgRlgn-ODpKOBaMZ8lxtFpobXpzDfH5zcaB98Z2sS3jM9t52xitetDxJbTWbeO-dnao6viDs95uatOo-HLwwWjb-L3V23g15B56_zR6VKrGw7NxPYm-fzz_dvZ5dnH1aXm2uJgVWcL6GWUCBOYZoZSkucoZVrjISFoWZVImGpJcA0-YxmESnadpnmDIMRMUKCMsJSfRy73uprFejvnwEnPBGWIiFYFY7glt1VpunGmV20qrjPxtsK6SyvWmaEAqrEgBhch1qShNWV4qTssCqAj5YyUErdPxtiFvQRfQ9U41E9HpSWdqWdlrSTNOEoqCwJtRwNmfA_hetsYX0DSqAzuEuDOUpUQkNPs7ygWiKSIZDuirP9D7EzFSlQpvNV1pQ4jFTlQuKBcsCQwN1PweKgwNrSlsB6UJ9onD24lDYHq46Ss1eC-Xq6__wX75d_bqx5R9fcDWoJq-DqU79KGS_RSke7AI9esdlHd_h5HctdRt5uSupeTYUsHtxeG_3znd9hD5BYNVGwU</recordid><startdate>20160519</startdate><enddate>20160519</enddate><creator>Yang, Chu-Huai</creator><creator>Shih, Meng-Fu Maxwell</creator><creator>Chang, Ching-Ching</creator><creator>Chiang, Meng-Hsuan</creator><creator>Shih, Hsiang-Wen</creator><creator>Tsai, Ya-Lun</creator><creator>Chiang, Ann-Shyn</creator><creator>Fu, Tsai-Feng</creator><creator>Wu, Chia-Lin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2976-9054</orcidid></search><sort><creationdate>20160519</creationdate><title>Additive Expression of Consolidated Memory through Drosophila Mushroom Body Subsets</title><author>Yang, Chu-Huai ; Shih, Meng-Fu Maxwell ; Chang, Ching-Ching ; Chiang, Meng-Hsuan ; Shih, Hsiang-Wen ; Tsai, Ya-Lun ; Chiang, Ann-Shyn ; Fu, Tsai-Feng ; Wu, Chia-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c825t-459e917834436bab51a1c836fcf2f2de2bde725d125d3db66b21eb1594e453563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anesthesia - adverse effects</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Biology and Life Sciences</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Gene Knockdown Techniques</topic><topic>Genetic aspects</topic><topic>Insects</topic><topic>Memory</topic><topic>Memory - drug effects</topic><topic>Mushroom Bodies - drug effects</topic><topic>Mushroom Bodies - metabolism</topic><topic>Neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Observations</topic><topic>Olfactory Cortex - metabolism</topic><topic>Phosphoproteins - genetics</topic><topic>Receptors, G-Protein-Coupled - genetics</topic><topic>Research and Analysis Methods</topic><topic>Smell - genetics</topic><topic>Smell - physiology</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chu-Huai</creatorcontrib><creatorcontrib>Shih, Meng-Fu Maxwell</creatorcontrib><creatorcontrib>Chang, Ching-Ching</creatorcontrib><creatorcontrib>Chiang, Meng-Hsuan</creatorcontrib><creatorcontrib>Shih, Hsiang-Wen</creatorcontrib><creatorcontrib>Tsai, Ya-Lun</creatorcontrib><creatorcontrib>Chiang, Ann-Shyn</creatorcontrib><creatorcontrib>Fu, Tsai-Feng</creatorcontrib><creatorcontrib>Wu, Chia-Lin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Chu-Huai</au><au>Shih, Meng-Fu Maxwell</au><au>Chang, Ching-Ching</au><au>Chiang, Meng-Hsuan</au><au>Shih, Hsiang-Wen</au><au>Tsai, Ya-Lun</au><au>Chiang, Ann-Shyn</au><au>Fu, Tsai-Feng</au><au>Wu, Chia-Lin</au><au>Schoofs, Liliane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Additive Expression of Consolidated Memory through Drosophila Mushroom Body Subsets</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2016-05-19</date><risdate>2016</risdate><volume>12</volume><issue>5</issue><spage>e1006061</spage><epage>e1006061</epage><pages>e1006061-e1006061</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Associative olfactory memory in Drosophila has two components called labile anesthesia-sensitive memory and consolidated anesthesia-resistant memory (ARM). Mushroom body (MB) is a brain region critical for the olfactory memory and comprised of 2000 neurons that can be classified into αβ, α'β', and γ neurons. Previously we demonstrated that two parallel pathways mediated ARM consolidation: the serotonergic dorsal paired medial (DPM)-αβ neurons and the octopaminergic anterior paired lateral (APL)-α'β' neurons. This finding prompted us to ask how this composite ARM is retrieved. Here, we showed that blocking the output of αβ neurons and that of α'β' neurons each impaired ARM retrieval, and blocking both simultaneously had an additive effect. Knockdown of radish and octβ2R in αβ and α'β' neurons, respectively, impaired ARM. A combinatorial assay of radish mutant background rsh1 and neurotransmission blockade confirmed that ARM retrieved from α'β' neuron output is independent of radish. We identified MBON-β2β'2a and MBON-β'2mp as the MB output neurons downstream of αβ and α'β' neurons, respectively, whose glutamatergic transmissions also additively contribute to ARM retrieval. Finally, we showed that α'β' neurons could be functionally subdivided into α'β'm neurons required for ARM retrieval, and α'β'ap neurons required for ARM consolidation. Our work demonstrated that two parallel neural pathways mediating ARM consolidation in Drosophila MB additively contribute to ARM expression during retrieval.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27195782</pmid><doi>10.1371/journal.pgen.1006061</doi><orcidid>https://orcid.org/0000-0002-2976-9054</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2016-05, Vol.12 (5), p.e1006061-e1006061
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1797505969
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Anesthesia - adverse effects
Animals
Animals, Genetically Modified
Biology and Life Sciences
Drosophila
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila Proteins - genetics
Experiments
Gene expression
Gene Knockdown Techniques
Genetic aspects
Insects
Memory
Memory - drug effects
Mushroom Bodies - drug effects
Mushroom Bodies - metabolism
Neurons
Neurons - drug effects
Neurons - metabolism
Observations
Olfactory Cortex - metabolism
Phosphoproteins - genetics
Receptors, G-Protein-Coupled - genetics
Research and Analysis Methods
Smell - genetics
Smell - physiology
Synaptic Transmission - drug effects
Synaptic Transmission - genetics
title Additive Expression of Consolidated Memory through Drosophila Mushroom Body Subsets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Additive%20Expression%20of%20Consolidated%20Memory%20through%20Drosophila%20Mushroom%20Body%20Subsets&rft.jtitle=PLoS%20genetics&rft.au=Yang,%20Chu-Huai&rft.date=2016-05-19&rft.volume=12&rft.issue=5&rft.spage=e1006061&rft.epage=e1006061&rft.pages=e1006061-e1006061&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1006061&rft_dat=%3Cgale_plos_%3EA479526934%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1797505969&rft_id=info:pmid/27195782&rft_galeid=A479526934&rft_doaj_id=oai_doaj_org_article_a1a3cec9bdfa4465bfa74fce494045fe&rfr_iscdi=true