The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer
Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identifi...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2016-05, Vol.12 (5), p.e1006039-e1006039 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1006039 |
---|---|
container_issue | 5 |
container_start_page | e1006039 |
container_title | PLoS genetics |
container_volume | 12 |
creator | Hartung, Anne-Mette Swensen, Jeff Uriz, Inaki E Lapin, Morten Kristjansdottir, Karen Petersen, Ulrika S S Bang, Jeanne Mari V Guerra, Barbara Andersen, Henriette Skovgaard Dobrowolski, Steven F Carey, John C Yu, Ping Vaughn, Cecily Calhoun, Amy Larsen, Martin R Dyrskjøt, Lars Stevenson, David A Andresen, Brage S |
description | Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping. |
doi_str_mv | 10.1371/journal.pgen.1006039 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1797505934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A479526932</galeid><doaj_id>oai_doaj_org_article_1e346ab8d30947b8a0549231e917af6c</doaj_id><sourcerecordid>A479526932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c759t-10eb743144c9d35bf082505a0fd6c9b41909341b078053fae99d498f705a5a013</originalsourceid><addsrcrecordid>eNqVk11v0zAYhSMEYmPwDxBEQkJw0WLHThzfIFVlY5UGQ-vg1nKcN62r1C62U9F_j9N2U4smAcqFv55zbB_nTZKXGA0xYfjDwnbOyHa4moEZYoQKRPij5BTnORkwiujjg_5J8sz7BUIkLzl7mpxkDPO84Pw0Wd_OIZ2uWq20maXnTRM7YNQmtU06UkGvZegXLm9G0_RLF-LIGp-OpUk_QQC31AbSsfUB2tam042pnV1C-m0OxobNClJp6vTCwc9ua6pNL1XgnidPGtl6eLFvz5LvF-e348vB1fXnyXh0NVAs52GAEVSMEkyp4jXJqwaVWY5yiZq6ULyimCNOKK4QK1FOGgmc15SXDYtMpDA5S17vfFet9WIfmReYcRZ9ojYSkx1RW7kQK6eX0m2ElVpsJ6ybCemCVi0IDIQWsiprgjhlVSlRTnlGMHDMZFOo6PVxv1tXLaFWYIKT7ZHp8YrRczGza0FLFi9ZRIN3ewNnY2Q-iKX2KmYrDdgunrtEZZGxnOC_o4wjWlDOe9c3f6APB7GnZjLeVZvGxiOq3lSMKON5VnCSRWr4ABW_GpZaWQONjvNHgvdHgsgE-BVmsvNeTKY3_8F-_Xf2-scx-_aAnYNsw9zbttv-zMcg3YHKWe8dNPdvh5Hoq-4uOdFXndhXXZS9Onz3e9FdmZHf_yAkog</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797505934</pqid></control><display><type>article</type><title>The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Hartung, Anne-Mette ; Swensen, Jeff ; Uriz, Inaki E ; Lapin, Morten ; Kristjansdottir, Karen ; Petersen, Ulrika S S ; Bang, Jeanne Mari V ; Guerra, Barbara ; Andersen, Henriette Skovgaard ; Dobrowolski, Steven F ; Carey, John C ; Yu, Ping ; Vaughn, Cecily ; Calhoun, Amy ; Larsen, Martin R ; Dyrskjøt, Lars ; Stevenson, David A ; Andresen, Brage S</creator><contributor>Goriely, Anne</contributor><creatorcontrib>Hartung, Anne-Mette ; Swensen, Jeff ; Uriz, Inaki E ; Lapin, Morten ; Kristjansdottir, Karen ; Petersen, Ulrika S S ; Bang, Jeanne Mari V ; Guerra, Barbara ; Andersen, Henriette Skovgaard ; Dobrowolski, Steven F ; Carey, John C ; Yu, Ping ; Vaughn, Cecily ; Calhoun, Amy ; Larsen, Martin R ; Dyrskjøt, Lars ; Stevenson, David A ; Andresen, Brage S ; Goriely, Anne</creatorcontrib><description>Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1006039</identifier><identifier>PMID: 27195699</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Cancer ; Charitable foundations ; Child ; Cloning ; Codon - genetics ; Colleges & universities ; Costello syndrome ; Costello Syndrome - genetics ; Costello Syndrome - pathology ; Councils ; Efficiency ; Exons - genetics ; Experiments ; Gene mutation ; Genes ; Genetic aspects ; Genotype ; Genotype & phenotype ; Germ-Line Mutation - genetics ; Health aspects ; Humans ; Male ; Medicine and Health Sciences ; Mutation ; Neoplasms - genetics ; Neoplasms - pathology ; Phenotype ; Phenotypes ; Proteins ; Proto-Oncogene Proteins p21(ras) - genetics ; Research and Analysis Methods ; RNA Splice Sites - genetics ; RNA Splicing - genetics ; Rodents ; Signal transduction</subject><ispartof>PLoS genetics, 2016-05, Vol.12 (5), p.e1006039-e1006039</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer. PLoS Genet 12(5): e1006039. doi:10.1371/journal.pgen.1006039</rights><rights>2016 Hartung et al 2016 Hartung et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer. PLoS Genet 12(5): e1006039. doi:10.1371/journal.pgen.1006039</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c759t-10eb743144c9d35bf082505a0fd6c9b41909341b078053fae99d498f705a5a013</citedby><cites>FETCH-LOGICAL-c759t-10eb743144c9d35bf082505a0fd6c9b41909341b078053fae99d498f705a5a013</cites><orcidid>0000-0003-4289-6346 ; 0000-0002-8204-4220 ; 0000-0003-4183-0679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873146/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873146/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27195699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Goriely, Anne</contributor><creatorcontrib>Hartung, Anne-Mette</creatorcontrib><creatorcontrib>Swensen, Jeff</creatorcontrib><creatorcontrib>Uriz, Inaki E</creatorcontrib><creatorcontrib>Lapin, Morten</creatorcontrib><creatorcontrib>Kristjansdottir, Karen</creatorcontrib><creatorcontrib>Petersen, Ulrika S S</creatorcontrib><creatorcontrib>Bang, Jeanne Mari V</creatorcontrib><creatorcontrib>Guerra, Barbara</creatorcontrib><creatorcontrib>Andersen, Henriette Skovgaard</creatorcontrib><creatorcontrib>Dobrowolski, Steven F</creatorcontrib><creatorcontrib>Carey, John C</creatorcontrib><creatorcontrib>Yu, Ping</creatorcontrib><creatorcontrib>Vaughn, Cecily</creatorcontrib><creatorcontrib>Calhoun, Amy</creatorcontrib><creatorcontrib>Larsen, Martin R</creatorcontrib><creatorcontrib>Dyrskjøt, Lars</creatorcontrib><creatorcontrib>Stevenson, David A</creatorcontrib><creatorcontrib>Andresen, Brage S</creatorcontrib><title>The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping.</description><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Charitable foundations</subject><subject>Child</subject><subject>Cloning</subject><subject>Codon - genetics</subject><subject>Colleges & universities</subject><subject>Costello syndrome</subject><subject>Costello Syndrome - genetics</subject><subject>Costello Syndrome - pathology</subject><subject>Councils</subject><subject>Efficiency</subject><subject>Exons - genetics</subject><subject>Experiments</subject><subject>Gene mutation</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genotype</subject><subject>Genotype & phenotype</subject><subject>Germ-Line Mutation - genetics</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - pathology</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins p21(ras) - genetics</subject><subject>Research and Analysis Methods</subject><subject>RNA Splice Sites - genetics</subject><subject>RNA Splicing - genetics</subject><subject>Rodents</subject><subject>Signal transduction</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11v0zAYhSMEYmPwDxBEQkJw0WLHThzfIFVlY5UGQ-vg1nKcN62r1C62U9F_j9N2U4smAcqFv55zbB_nTZKXGA0xYfjDwnbOyHa4moEZYoQKRPij5BTnORkwiujjg_5J8sz7BUIkLzl7mpxkDPO84Pw0Wd_OIZ2uWq20maXnTRM7YNQmtU06UkGvZegXLm9G0_RLF-LIGp-OpUk_QQC31AbSsfUB2tam042pnV1C-m0OxobNClJp6vTCwc9ua6pNL1XgnidPGtl6eLFvz5LvF-e348vB1fXnyXh0NVAs52GAEVSMEkyp4jXJqwaVWY5yiZq6ULyimCNOKK4QK1FOGgmc15SXDYtMpDA5S17vfFet9WIfmReYcRZ9ojYSkx1RW7kQK6eX0m2ElVpsJ6ybCemCVi0IDIQWsiprgjhlVSlRTnlGMHDMZFOo6PVxv1tXLaFWYIKT7ZHp8YrRczGza0FLFi9ZRIN3ewNnY2Q-iKX2KmYrDdgunrtEZZGxnOC_o4wjWlDOe9c3f6APB7GnZjLeVZvGxiOq3lSMKON5VnCSRWr4ABW_GpZaWQONjvNHgvdHgsgE-BVmsvNeTKY3_8F-_Xf2-scx-_aAnYNsw9zbttv-zMcg3YHKWe8dNPdvh5Hoq-4uOdFXndhXXZS9Onz3e9FdmZHf_yAkog</recordid><startdate>20160519</startdate><enddate>20160519</enddate><creator>Hartung, Anne-Mette</creator><creator>Swensen, Jeff</creator><creator>Uriz, Inaki E</creator><creator>Lapin, Morten</creator><creator>Kristjansdottir, Karen</creator><creator>Petersen, Ulrika S S</creator><creator>Bang, Jeanne Mari V</creator><creator>Guerra, Barbara</creator><creator>Andersen, Henriette Skovgaard</creator><creator>Dobrowolski, Steven F</creator><creator>Carey, John C</creator><creator>Yu, Ping</creator><creator>Vaughn, Cecily</creator><creator>Calhoun, Amy</creator><creator>Larsen, Martin R</creator><creator>Dyrskjøt, Lars</creator><creator>Stevenson, David A</creator><creator>Andresen, Brage S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4289-6346</orcidid><orcidid>https://orcid.org/0000-0002-8204-4220</orcidid><orcidid>https://orcid.org/0000-0003-4183-0679</orcidid></search><sort><creationdate>20160519</creationdate><title>The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer</title><author>Hartung, Anne-Mette ; Swensen, Jeff ; Uriz, Inaki E ; Lapin, Morten ; Kristjansdottir, Karen ; Petersen, Ulrika S S ; Bang, Jeanne Mari V ; Guerra, Barbara ; Andersen, Henriette Skovgaard ; Dobrowolski, Steven F ; Carey, John C ; Yu, Ping ; Vaughn, Cecily ; Calhoun, Amy ; Larsen, Martin R ; Dyrskjøt, Lars ; Stevenson, David A ; Andresen, Brage S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c759t-10eb743144c9d35bf082505a0fd6c9b41909341b078053fae99d498f705a5a013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Charitable foundations</topic><topic>Child</topic><topic>Cloning</topic><topic>Codon - genetics</topic><topic>Colleges & universities</topic><topic>Costello syndrome</topic><topic>Costello Syndrome - genetics</topic><topic>Costello Syndrome - pathology</topic><topic>Councils</topic><topic>Efficiency</topic><topic>Exons - genetics</topic><topic>Experiments</topic><topic>Gene mutation</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genotype</topic><topic>Genotype & phenotype</topic><topic>Germ-Line Mutation - genetics</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - pathology</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins p21(ras) - genetics</topic><topic>Research and Analysis Methods</topic><topic>RNA Splice Sites - genetics</topic><topic>RNA Splicing - genetics</topic><topic>Rodents</topic><topic>Signal transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartung, Anne-Mette</creatorcontrib><creatorcontrib>Swensen, Jeff</creatorcontrib><creatorcontrib>Uriz, Inaki E</creatorcontrib><creatorcontrib>Lapin, Morten</creatorcontrib><creatorcontrib>Kristjansdottir, Karen</creatorcontrib><creatorcontrib>Petersen, Ulrika S S</creatorcontrib><creatorcontrib>Bang, Jeanne Mari V</creatorcontrib><creatorcontrib>Guerra, Barbara</creatorcontrib><creatorcontrib>Andersen, Henriette Skovgaard</creatorcontrib><creatorcontrib>Dobrowolski, Steven F</creatorcontrib><creatorcontrib>Carey, John C</creatorcontrib><creatorcontrib>Yu, Ping</creatorcontrib><creatorcontrib>Vaughn, Cecily</creatorcontrib><creatorcontrib>Calhoun, Amy</creatorcontrib><creatorcontrib>Larsen, Martin R</creatorcontrib><creatorcontrib>Dyrskjøt, Lars</creatorcontrib><creatorcontrib>Stevenson, David A</creatorcontrib><creatorcontrib>Andresen, Brage S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartung, Anne-Mette</au><au>Swensen, Jeff</au><au>Uriz, Inaki E</au><au>Lapin, Morten</au><au>Kristjansdottir, Karen</au><au>Petersen, Ulrika S S</au><au>Bang, Jeanne Mari V</au><au>Guerra, Barbara</au><au>Andersen, Henriette Skovgaard</au><au>Dobrowolski, Steven F</au><au>Carey, John C</au><au>Yu, Ping</au><au>Vaughn, Cecily</au><au>Calhoun, Amy</au><au>Larsen, Martin R</au><au>Dyrskjøt, Lars</au><au>Stevenson, David A</au><au>Andresen, Brage S</au><au>Goriely, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2016-05-19</date><risdate>2016</risdate><volume>12</volume><issue>5</issue><spage>e1006039</spage><epage>e1006039</epage><pages>e1006039-e1006039</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27195699</pmid><doi>10.1371/journal.pgen.1006039</doi><orcidid>https://orcid.org/0000-0003-4289-6346</orcidid><orcidid>https://orcid.org/0000-0002-8204-4220</orcidid><orcidid>https://orcid.org/0000-0003-4183-0679</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2016-05, Vol.12 (5), p.e1006039-e1006039 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1797505934 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Biology and Life Sciences Cancer Charitable foundations Child Cloning Codon - genetics Colleges & universities Costello syndrome Costello Syndrome - genetics Costello Syndrome - pathology Councils Efficiency Exons - genetics Experiments Gene mutation Genes Genetic aspects Genotype Genotype & phenotype Germ-Line Mutation - genetics Health aspects Humans Male Medicine and Health Sciences Mutation Neoplasms - genetics Neoplasms - pathology Phenotype Phenotypes Proteins Proto-Oncogene Proteins p21(ras) - genetics Research and Analysis Methods RNA Splice Sites - genetics RNA Splicing - genetics Rodents Signal transduction |
title | The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Splicing%20Efficiency%20of%20Activating%20HRAS%20Mutations%20Can%20Determine%20Costello%20Syndrome%20Phenotype%20and%20Frequency%20in%20Cancer&rft.jtitle=PLoS%20genetics&rft.au=Hartung,%20Anne-Mette&rft.date=2016-05-19&rft.volume=12&rft.issue=5&rft.spage=e1006039&rft.epage=e1006039&rft.pages=e1006039-e1006039&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1006039&rft_dat=%3Cgale_plos_%3EA479526932%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1797505934&rft_id=info:pmid/27195699&rft_galeid=A479526932&rft_doaj_id=oai_doaj_org_article_1e346ab8d30947b8a0549231e917af6c&rfr_iscdi=true |