The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer

Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2016-05, Vol.12 (5), p.e1006039-e1006039
Hauptverfasser: Hartung, Anne-Mette, Swensen, Jeff, Uriz, Inaki E, Lapin, Morten, Kristjansdottir, Karen, Petersen, Ulrika S S, Bang, Jeanne Mari V, Guerra, Barbara, Andersen, Henriette Skovgaard, Dobrowolski, Steven F, Carey, John C, Yu, Ping, Vaughn, Cecily, Calhoun, Amy, Larsen, Martin R, Dyrskjøt, Lars, Stevenson, David A, Andresen, Brage S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1006039
container_issue 5
container_start_page e1006039
container_title PLoS genetics
container_volume 12
creator Hartung, Anne-Mette
Swensen, Jeff
Uriz, Inaki E
Lapin, Morten
Kristjansdottir, Karen
Petersen, Ulrika S S
Bang, Jeanne Mari V
Guerra, Barbara
Andersen, Henriette Skovgaard
Dobrowolski, Steven F
Carey, John C
Yu, Ping
Vaughn, Cecily
Calhoun, Amy
Larsen, Martin R
Dyrskjøt, Lars
Stevenson, David A
Andresen, Brage S
description Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping.
doi_str_mv 10.1371/journal.pgen.1006039
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1797505934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A479526932</galeid><doaj_id>oai_doaj_org_article_1e346ab8d30947b8a0549231e917af6c</doaj_id><sourcerecordid>A479526932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c759t-10eb743144c9d35bf082505a0fd6c9b41909341b078053fae99d498f705a5a013</originalsourceid><addsrcrecordid>eNqVk11v0zAYhSMEYmPwDxBEQkJw0WLHThzfIFVlY5UGQ-vg1nKcN62r1C62U9F_j9N2U4smAcqFv55zbB_nTZKXGA0xYfjDwnbOyHa4moEZYoQKRPij5BTnORkwiujjg_5J8sz7BUIkLzl7mpxkDPO84Pw0Wd_OIZ2uWq20maXnTRM7YNQmtU06UkGvZegXLm9G0_RLF-LIGp-OpUk_QQC31AbSsfUB2tam042pnV1C-m0OxobNClJp6vTCwc9ua6pNL1XgnidPGtl6eLFvz5LvF-e348vB1fXnyXh0NVAs52GAEVSMEkyp4jXJqwaVWY5yiZq6ULyimCNOKK4QK1FOGgmc15SXDYtMpDA5S17vfFet9WIfmReYcRZ9ojYSkx1RW7kQK6eX0m2ElVpsJ6ybCemCVi0IDIQWsiprgjhlVSlRTnlGMHDMZFOo6PVxv1tXLaFWYIKT7ZHp8YrRczGza0FLFi9ZRIN3ewNnY2Q-iKX2KmYrDdgunrtEZZGxnOC_o4wjWlDOe9c3f6APB7GnZjLeVZvGxiOq3lSMKON5VnCSRWr4ABW_GpZaWQONjvNHgvdHgsgE-BVmsvNeTKY3_8F-_Xf2-scx-_aAnYNsw9zbttv-zMcg3YHKWe8dNPdvh5Hoq-4uOdFXndhXXZS9Onz3e9FdmZHf_yAkog</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797505934</pqid></control><display><type>article</type><title>The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Hartung, Anne-Mette ; Swensen, Jeff ; Uriz, Inaki E ; Lapin, Morten ; Kristjansdottir, Karen ; Petersen, Ulrika S S ; Bang, Jeanne Mari V ; Guerra, Barbara ; Andersen, Henriette Skovgaard ; Dobrowolski, Steven F ; Carey, John C ; Yu, Ping ; Vaughn, Cecily ; Calhoun, Amy ; Larsen, Martin R ; Dyrskjøt, Lars ; Stevenson, David A ; Andresen, Brage S</creator><contributor>Goriely, Anne</contributor><creatorcontrib>Hartung, Anne-Mette ; Swensen, Jeff ; Uriz, Inaki E ; Lapin, Morten ; Kristjansdottir, Karen ; Petersen, Ulrika S S ; Bang, Jeanne Mari V ; Guerra, Barbara ; Andersen, Henriette Skovgaard ; Dobrowolski, Steven F ; Carey, John C ; Yu, Ping ; Vaughn, Cecily ; Calhoun, Amy ; Larsen, Martin R ; Dyrskjøt, Lars ; Stevenson, David A ; Andresen, Brage S ; Goriely, Anne</creatorcontrib><description>Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC&gt;TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC&gt;TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1006039</identifier><identifier>PMID: 27195699</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Cancer ; Charitable foundations ; Child ; Cloning ; Codon - genetics ; Colleges &amp; universities ; Costello syndrome ; Costello Syndrome - genetics ; Costello Syndrome - pathology ; Councils ; Efficiency ; Exons - genetics ; Experiments ; Gene mutation ; Genes ; Genetic aspects ; Genotype ; Genotype &amp; phenotype ; Germ-Line Mutation - genetics ; Health aspects ; Humans ; Male ; Medicine and Health Sciences ; Mutation ; Neoplasms - genetics ; Neoplasms - pathology ; Phenotype ; Phenotypes ; Proteins ; Proto-Oncogene Proteins p21(ras) - genetics ; Research and Analysis Methods ; RNA Splice Sites - genetics ; RNA Splicing - genetics ; Rodents ; Signal transduction</subject><ispartof>PLoS genetics, 2016-05, Vol.12 (5), p.e1006039-e1006039</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer. PLoS Genet 12(5): e1006039. doi:10.1371/journal.pgen.1006039</rights><rights>2016 Hartung et al 2016 Hartung et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer. PLoS Genet 12(5): e1006039. doi:10.1371/journal.pgen.1006039</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c759t-10eb743144c9d35bf082505a0fd6c9b41909341b078053fae99d498f705a5a013</citedby><cites>FETCH-LOGICAL-c759t-10eb743144c9d35bf082505a0fd6c9b41909341b078053fae99d498f705a5a013</cites><orcidid>0000-0003-4289-6346 ; 0000-0002-8204-4220 ; 0000-0003-4183-0679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873146/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873146/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27195699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Goriely, Anne</contributor><creatorcontrib>Hartung, Anne-Mette</creatorcontrib><creatorcontrib>Swensen, Jeff</creatorcontrib><creatorcontrib>Uriz, Inaki E</creatorcontrib><creatorcontrib>Lapin, Morten</creatorcontrib><creatorcontrib>Kristjansdottir, Karen</creatorcontrib><creatorcontrib>Petersen, Ulrika S S</creatorcontrib><creatorcontrib>Bang, Jeanne Mari V</creatorcontrib><creatorcontrib>Guerra, Barbara</creatorcontrib><creatorcontrib>Andersen, Henriette Skovgaard</creatorcontrib><creatorcontrib>Dobrowolski, Steven F</creatorcontrib><creatorcontrib>Carey, John C</creatorcontrib><creatorcontrib>Yu, Ping</creatorcontrib><creatorcontrib>Vaughn, Cecily</creatorcontrib><creatorcontrib>Calhoun, Amy</creatorcontrib><creatorcontrib>Larsen, Martin R</creatorcontrib><creatorcontrib>Dyrskjøt, Lars</creatorcontrib><creatorcontrib>Stevenson, David A</creatorcontrib><creatorcontrib>Andresen, Brage S</creatorcontrib><title>The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC&gt;TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC&gt;TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping.</description><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Charitable foundations</subject><subject>Child</subject><subject>Cloning</subject><subject>Codon - genetics</subject><subject>Colleges &amp; universities</subject><subject>Costello syndrome</subject><subject>Costello Syndrome - genetics</subject><subject>Costello Syndrome - pathology</subject><subject>Councils</subject><subject>Efficiency</subject><subject>Exons - genetics</subject><subject>Experiments</subject><subject>Gene mutation</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genotype</subject><subject>Genotype &amp; phenotype</subject><subject>Germ-Line Mutation - genetics</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - pathology</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins p21(ras) - genetics</subject><subject>Research and Analysis Methods</subject><subject>RNA Splice Sites - genetics</subject><subject>RNA Splicing - genetics</subject><subject>Rodents</subject><subject>Signal transduction</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11v0zAYhSMEYmPwDxBEQkJw0WLHThzfIFVlY5UGQ-vg1nKcN62r1C62U9F_j9N2U4smAcqFv55zbB_nTZKXGA0xYfjDwnbOyHa4moEZYoQKRPij5BTnORkwiujjg_5J8sz7BUIkLzl7mpxkDPO84Pw0Wd_OIZ2uWq20maXnTRM7YNQmtU06UkGvZegXLm9G0_RLF-LIGp-OpUk_QQC31AbSsfUB2tam042pnV1C-m0OxobNClJp6vTCwc9ua6pNL1XgnidPGtl6eLFvz5LvF-e348vB1fXnyXh0NVAs52GAEVSMEkyp4jXJqwaVWY5yiZq6ULyimCNOKK4QK1FOGgmc15SXDYtMpDA5S17vfFet9WIfmReYcRZ9ojYSkx1RW7kQK6eX0m2ElVpsJ6ybCemCVi0IDIQWsiprgjhlVSlRTnlGMHDMZFOo6PVxv1tXLaFWYIKT7ZHp8YrRczGza0FLFi9ZRIN3ewNnY2Q-iKX2KmYrDdgunrtEZZGxnOC_o4wjWlDOe9c3f6APB7GnZjLeVZvGxiOq3lSMKON5VnCSRWr4ABW_GpZaWQONjvNHgvdHgsgE-BVmsvNeTKY3_8F-_Xf2-scx-_aAnYNsw9zbttv-zMcg3YHKWe8dNPdvh5Hoq-4uOdFXndhXXZS9Onz3e9FdmZHf_yAkog</recordid><startdate>20160519</startdate><enddate>20160519</enddate><creator>Hartung, Anne-Mette</creator><creator>Swensen, Jeff</creator><creator>Uriz, Inaki E</creator><creator>Lapin, Morten</creator><creator>Kristjansdottir, Karen</creator><creator>Petersen, Ulrika S S</creator><creator>Bang, Jeanne Mari V</creator><creator>Guerra, Barbara</creator><creator>Andersen, Henriette Skovgaard</creator><creator>Dobrowolski, Steven F</creator><creator>Carey, John C</creator><creator>Yu, Ping</creator><creator>Vaughn, Cecily</creator><creator>Calhoun, Amy</creator><creator>Larsen, Martin R</creator><creator>Dyrskjøt, Lars</creator><creator>Stevenson, David A</creator><creator>Andresen, Brage S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4289-6346</orcidid><orcidid>https://orcid.org/0000-0002-8204-4220</orcidid><orcidid>https://orcid.org/0000-0003-4183-0679</orcidid></search><sort><creationdate>20160519</creationdate><title>The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer</title><author>Hartung, Anne-Mette ; Swensen, Jeff ; Uriz, Inaki E ; Lapin, Morten ; Kristjansdottir, Karen ; Petersen, Ulrika S S ; Bang, Jeanne Mari V ; Guerra, Barbara ; Andersen, Henriette Skovgaard ; Dobrowolski, Steven F ; Carey, John C ; Yu, Ping ; Vaughn, Cecily ; Calhoun, Amy ; Larsen, Martin R ; Dyrskjøt, Lars ; Stevenson, David A ; Andresen, Brage S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c759t-10eb743144c9d35bf082505a0fd6c9b41909341b078053fae99d498f705a5a013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Charitable foundations</topic><topic>Child</topic><topic>Cloning</topic><topic>Codon - genetics</topic><topic>Colleges &amp; universities</topic><topic>Costello syndrome</topic><topic>Costello Syndrome - genetics</topic><topic>Costello Syndrome - pathology</topic><topic>Councils</topic><topic>Efficiency</topic><topic>Exons - genetics</topic><topic>Experiments</topic><topic>Gene mutation</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genotype</topic><topic>Genotype &amp; phenotype</topic><topic>Germ-Line Mutation - genetics</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - pathology</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins p21(ras) - genetics</topic><topic>Research and Analysis Methods</topic><topic>RNA Splice Sites - genetics</topic><topic>RNA Splicing - genetics</topic><topic>Rodents</topic><topic>Signal transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartung, Anne-Mette</creatorcontrib><creatorcontrib>Swensen, Jeff</creatorcontrib><creatorcontrib>Uriz, Inaki E</creatorcontrib><creatorcontrib>Lapin, Morten</creatorcontrib><creatorcontrib>Kristjansdottir, Karen</creatorcontrib><creatorcontrib>Petersen, Ulrika S S</creatorcontrib><creatorcontrib>Bang, Jeanne Mari V</creatorcontrib><creatorcontrib>Guerra, Barbara</creatorcontrib><creatorcontrib>Andersen, Henriette Skovgaard</creatorcontrib><creatorcontrib>Dobrowolski, Steven F</creatorcontrib><creatorcontrib>Carey, John C</creatorcontrib><creatorcontrib>Yu, Ping</creatorcontrib><creatorcontrib>Vaughn, Cecily</creatorcontrib><creatorcontrib>Calhoun, Amy</creatorcontrib><creatorcontrib>Larsen, Martin R</creatorcontrib><creatorcontrib>Dyrskjøt, Lars</creatorcontrib><creatorcontrib>Stevenson, David A</creatorcontrib><creatorcontrib>Andresen, Brage S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartung, Anne-Mette</au><au>Swensen, Jeff</au><au>Uriz, Inaki E</au><au>Lapin, Morten</au><au>Kristjansdottir, Karen</au><au>Petersen, Ulrika S S</au><au>Bang, Jeanne Mari V</au><au>Guerra, Barbara</au><au>Andersen, Henriette Skovgaard</au><au>Dobrowolski, Steven F</au><au>Carey, John C</au><au>Yu, Ping</au><au>Vaughn, Cecily</au><au>Calhoun, Amy</au><au>Larsen, Martin R</au><au>Dyrskjøt, Lars</au><au>Stevenson, David A</au><au>Andresen, Brage S</au><au>Goriely, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2016-05-19</date><risdate>2016</risdate><volume>12</volume><issue>5</issue><spage>e1006039</spage><epage>e1006039</epage><pages>e1006039-e1006039</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC&gt;TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC&gt;TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27195699</pmid><doi>10.1371/journal.pgen.1006039</doi><orcidid>https://orcid.org/0000-0003-4289-6346</orcidid><orcidid>https://orcid.org/0000-0002-8204-4220</orcidid><orcidid>https://orcid.org/0000-0003-4183-0679</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2016-05, Vol.12 (5), p.e1006039-e1006039
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1797505934
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Biology and Life Sciences
Cancer
Charitable foundations
Child
Cloning
Codon - genetics
Colleges & universities
Costello syndrome
Costello Syndrome - genetics
Costello Syndrome - pathology
Councils
Efficiency
Exons - genetics
Experiments
Gene mutation
Genes
Genetic aspects
Genotype
Genotype & phenotype
Germ-Line Mutation - genetics
Health aspects
Humans
Male
Medicine and Health Sciences
Mutation
Neoplasms - genetics
Neoplasms - pathology
Phenotype
Phenotypes
Proteins
Proto-Oncogene Proteins p21(ras) - genetics
Research and Analysis Methods
RNA Splice Sites - genetics
RNA Splicing - genetics
Rodents
Signal transduction
title The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T05%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Splicing%20Efficiency%20of%20Activating%20HRAS%20Mutations%20Can%20Determine%20Costello%20Syndrome%20Phenotype%20and%20Frequency%20in%20Cancer&rft.jtitle=PLoS%20genetics&rft.au=Hartung,%20Anne-Mette&rft.date=2016-05-19&rft.volume=12&rft.issue=5&rft.spage=e1006039&rft.epage=e1006039&rft.pages=e1006039-e1006039&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1006039&rft_dat=%3Cgale_plos_%3EA479526932%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1797505934&rft_id=info:pmid/27195699&rft_galeid=A479526932&rft_doaj_id=oai_doaj_org_article_1e346ab8d30947b8a0549231e917af6c&rfr_iscdi=true