Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling

Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2016-05, Vol.14 (5), p.e1002466-48
Hauptverfasser: Abiega, Oihane, Beccari, Sol, Diaz-Aparicio, Irune, Nadjar, Agnes, Layé, Sophie, Leyrolle, Quentin, Gómez-Nicola, Diego, Domercq, María, Pérez-Samartín, Alberto, Sánchez-Zafra, Víctor, Paris, Iñaki, Valero, Jorge, Savage, Julie C, Hui, Chin-Wai, Tremblay, Marie-Ève, Deudero, Juan J P, Brewster, Amy L, Anderson, Anne E, Zaldumbide, Laura, Galbarriatu, Lara, Marinas, Ainhoa, Vivanco, Maria dM, Matute, Carlos, Maletic-Savatic, Mirjana, Encinas, Juan M, Sierra, Amanda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 5
container_start_page e1002466
container_title PLoS biology
container_volume 14
creator Abiega, Oihane
Beccari, Sol
Diaz-Aparicio, Irune
Nadjar, Agnes
Layé, Sophie
Leyrolle, Quentin
Gómez-Nicola, Diego
Domercq, María
Pérez-Samartín, Alberto
Sánchez-Zafra, Víctor
Paris, Iñaki
Valero, Jorge
Savage, Julie C
Hui, Chin-Wai
Tremblay, Marie-Ève
Deudero, Juan J P
Brewster, Amy L
Anderson, Anne E
Zaldumbide, Laura
Galbarriatu, Lara
Marinas, Ainhoa
Vivanco, Maria dM
Matute, Carlos
Maletic-Savatic, Mirjana
Encinas, Juan M
Sierra, Amanda
description Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate agonist NMDA) or inflammation in vivo (via systemic administration of bacterial lipopolysaccharides or by omega 3 fatty acid deficient diets), microglia resorted to different strategies to boost their phagocytic efficiency and compensate for the increased number of apoptotic cells, thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE) as well as in hippocampal tissue resected from individuals with MTLE, a major neurological disorder characterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor expression and was not directly mediated by signaling through microglial glutamate receptors. Instead, it was related to the disruption of local ATP microgradients caused by the hyperactivity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that was due not to decreased survival but to delayed cell clearance after seizures. These results demonstrate that the efficiency of microglial phagocytosis critically affects the dynamics of apoptosis and urge to routinely assess the microglial phagocytic efficiency in neurodegenerative disorders.
doi_str_mv 10.1371/journal.pbio.1002466
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1797504399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478820744</galeid><doaj_id>oai_doaj_org_article_a4cb0f67f35446f7a58f2aa586cd812c</doaj_id><sourcerecordid>A478820744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c7946-4718c5fb813f9c5c5aa21fe968e722ae8083cfd6b2771db40bd589b1fc73222c3</originalsourceid><addsrcrecordid>eNqVk99q2zAUxs3YWLtubzA2w25WaFJLliz5phC6bgn0H127WyHLkqviWJ5kh-a59oI7aZzSlF5sGGxx9Pu-o3OsE0UfUTJGKUOHd673jazHbWHdGCUJJln2KtpFlNAR45y-frLeid6FcAcMzjF_G-1ghjGnNNuN_pzr3jvwiafLVnupOruw3TL-ZkPX-yLEk-vL-Mwq7yovS6ubLhzEs3krrQ9DvLagPnOdrUF4EMumjK902Ssd4stbWTm17KyCkNJt53x8ct96HYJ1TXztbVVpb5sqnrQOdoMNh09MN_JVPL5plOvbGuD30Rsj66A_DN-96Ob7yfXxdHR68WN2PDkdKZaTbEQY4oqagqPU5IoqKiVGRucZ11C-1DzhqTJlVmDGUFmQpCgpzwtkFEsxxirdiz6vfdvaBTH0OwjEckYTkuY5ELM1UTp5J1pv59IvhZNWPAScr4T0UH2thSSqSEzGTEoJyQyTlBss4Z2pkqOHbEdDtr6Y61JBq72st0y3dxp7Kyq3EIRzlHMCBvtrg9tnsunkVKxiCcoSCpdggYD9OiTz7nevQyfmNihd17LRrocaoTkZSQmmgH55hr7ciYGqJBRrG-PgjGplKiYEriBOGFkdcfwCBU-p51a5RhsL8S3B_pYAmE7fd5XsQxCzn1f_wZ7_O3vxa5slaxbuZQhem8fmokSsRnHTELEaRTGMIsg-Pf2fj6LN7KV_AYKZMho</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797504399</pqid></control><display><type>article</type><title>Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling</title><source>PLoS</source><source>MEDLINE</source><source>PubMed</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Abiega, Oihane ; Beccari, Sol ; Diaz-Aparicio, Irune ; Nadjar, Agnes ; Layé, Sophie ; Leyrolle, Quentin ; Gómez-Nicola, Diego ; Domercq, María ; Pérez-Samartín, Alberto ; Sánchez-Zafra, Víctor ; Paris, Iñaki ; Valero, Jorge ; Savage, Julie C ; Hui, Chin-Wai ; Tremblay, Marie-Ève ; Deudero, Juan J P ; Brewster, Amy L ; Anderson, Anne E ; Zaldumbide, Laura ; Galbarriatu, Lara ; Marinas, Ainhoa ; Vivanco, Maria dM ; Matute, Carlos ; Maletic-Savatic, Mirjana ; Encinas, Juan M ; Sierra, Amanda</creator><creatorcontrib>Abiega, Oihane ; Beccari, Sol ; Diaz-Aparicio, Irune ; Nadjar, Agnes ; Layé, Sophie ; Leyrolle, Quentin ; Gómez-Nicola, Diego ; Domercq, María ; Pérez-Samartín, Alberto ; Sánchez-Zafra, Víctor ; Paris, Iñaki ; Valero, Jorge ; Savage, Julie C ; Hui, Chin-Wai ; Tremblay, Marie-Ève ; Deudero, Juan J P ; Brewster, Amy L ; Anderson, Anne E ; Zaldumbide, Laura ; Galbarriatu, Lara ; Marinas, Ainhoa ; Vivanco, Maria dM ; Matute, Carlos ; Maletic-Savatic, Mirjana ; Encinas, Juan M ; Sierra, Amanda</creatorcontrib><description>Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate agonist NMDA) or inflammation in vivo (via systemic administration of bacterial lipopolysaccharides or by omega 3 fatty acid deficient diets), microglia resorted to different strategies to boost their phagocytic efficiency and compensate for the increased number of apoptotic cells, thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE) as well as in hippocampal tissue resected from individuals with MTLE, a major neurological disorder characterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor expression and was not directly mediated by signaling through microglial glutamate receptors. Instead, it was related to the disruption of local ATP microgradients caused by the hyperactivity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that was due not to decreased survival but to delayed cell clearance after seizures. These results demonstrate that the efficiency of microglial phagocytosis critically affects the dynamics of apoptosis and urge to routinely assess the microglial phagocytic efficiency in neurodegenerative disorders.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1002466</identifier><identifier>PMID: 27228556</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine triphosphatase ; Adenosine Triphosphate - metabolism ; Adult ; Animals ; Apoptosis ; Apoptosis - physiology ; Biology and Life Sciences ; Brain research ; Cell cycle ; Chromatography ; CX3C Chemokine Receptor 1 ; Cytokines ; Efficiency ; Epilepsy ; Epilepsy, Temporal Lobe - physiopathology ; Fatty acids ; Gene expression ; Genetic aspects ; Humans ; Hyperactivity ; Inflammation ; Kainic Acid - toxicity ; Leukocyte Common Antigens - metabolism ; Life Sciences ; Medicine and Health Sciences ; Mice, Inbred C57BL ; Mice, Transgenic ; Microglia - metabolism ; Microglia - pathology ; Microscopy ; Monocytes - pathology ; Motility ; Neural circuitry ; Neurons - metabolism ; Neurons - pathology ; Neurosciences ; Observations ; Phagocytosis - physiology ; Physiology ; Receptors, CCR2 - genetics ; Receptors, CCR2 - metabolism ; Receptors, Chemokine - genetics ; Receptors, Chemokine - metabolism ; Research and Analysis Methods ; Rodents ; Seizures - chemically induced ; Seizures - physiopathology</subject><ispartof>PLoS biology, 2016-05, Vol.14 (5), p.e1002466-48</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Abiega O, Beccari S, Diaz-Aparicio I, Nadjar A, Layé S, Leyrolle Q, et al. (2016) Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling. PLoS Biol 14(5): e1002466. doi:10.1371/journal.pbio.1002466</rights><rights>Attribution - ShareAlike</rights><rights>2016 Abiega et al 2016 Abiega et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Abiega O, Beccari S, Diaz-Aparicio I, Nadjar A, Layé S, Leyrolle Q, et al. (2016) Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling. PLoS Biol 14(5): e1002466. doi:10.1371/journal.pbio.1002466</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c7946-4718c5fb813f9c5c5aa21fe968e722ae8083cfd6b2771db40bd589b1fc73222c3</citedby><cites>FETCH-LOGICAL-c7946-4718c5fb813f9c5c5aa21fe968e722ae8083cfd6b2771db40bd589b1fc73222c3</cites><orcidid>0000-0002-3887-0277 ; 0000-0003-3959-462X ; 0000-0003-2863-9626 ; 0000-0001-8415-096X ; 0000-0002-0402-972X ; 0000-0002-5428-7823 ; 0000-0003-0048-9005 ; 0000-0001-6072-3313 ; 0000-0002-3843-1012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4881984/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4881984/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27228556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01605002$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Abiega, Oihane</creatorcontrib><creatorcontrib>Beccari, Sol</creatorcontrib><creatorcontrib>Diaz-Aparicio, Irune</creatorcontrib><creatorcontrib>Nadjar, Agnes</creatorcontrib><creatorcontrib>Layé, Sophie</creatorcontrib><creatorcontrib>Leyrolle, Quentin</creatorcontrib><creatorcontrib>Gómez-Nicola, Diego</creatorcontrib><creatorcontrib>Domercq, María</creatorcontrib><creatorcontrib>Pérez-Samartín, Alberto</creatorcontrib><creatorcontrib>Sánchez-Zafra, Víctor</creatorcontrib><creatorcontrib>Paris, Iñaki</creatorcontrib><creatorcontrib>Valero, Jorge</creatorcontrib><creatorcontrib>Savage, Julie C</creatorcontrib><creatorcontrib>Hui, Chin-Wai</creatorcontrib><creatorcontrib>Tremblay, Marie-Ève</creatorcontrib><creatorcontrib>Deudero, Juan J P</creatorcontrib><creatorcontrib>Brewster, Amy L</creatorcontrib><creatorcontrib>Anderson, Anne E</creatorcontrib><creatorcontrib>Zaldumbide, Laura</creatorcontrib><creatorcontrib>Galbarriatu, Lara</creatorcontrib><creatorcontrib>Marinas, Ainhoa</creatorcontrib><creatorcontrib>Vivanco, Maria dM</creatorcontrib><creatorcontrib>Matute, Carlos</creatorcontrib><creatorcontrib>Maletic-Savatic, Mirjana</creatorcontrib><creatorcontrib>Encinas, Juan M</creatorcontrib><creatorcontrib>Sierra, Amanda</creatorcontrib><title>Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate agonist NMDA) or inflammation in vivo (via systemic administration of bacterial lipopolysaccharides or by omega 3 fatty acid deficient diets), microglia resorted to different strategies to boost their phagocytic efficiency and compensate for the increased number of apoptotic cells, thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE) as well as in hippocampal tissue resected from individuals with MTLE, a major neurological disorder characterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor expression and was not directly mediated by signaling through microglial glutamate receptors. Instead, it was related to the disruption of local ATP microgradients caused by the hyperactivity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that was due not to decreased survival but to delayed cell clearance after seizures. These results demonstrate that the efficiency of microglial phagocytosis critically affects the dynamics of apoptosis and urge to routinely assess the microglial phagocytic efficiency in neurodegenerative disorders.</description><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Adult</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - physiology</subject><subject>Biology and Life Sciences</subject><subject>Brain research</subject><subject>Cell cycle</subject><subject>Chromatography</subject><subject>CX3C Chemokine Receptor 1</subject><subject>Cytokines</subject><subject>Efficiency</subject><subject>Epilepsy</subject><subject>Epilepsy, Temporal Lobe - physiopathology</subject><subject>Fatty acids</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Humans</subject><subject>Hyperactivity</subject><subject>Inflammation</subject><subject>Kainic Acid - toxicity</subject><subject>Leukocyte Common Antigens - metabolism</subject><subject>Life Sciences</subject><subject>Medicine and Health Sciences</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microglia - metabolism</subject><subject>Microglia - pathology</subject><subject>Microscopy</subject><subject>Monocytes - pathology</subject><subject>Motility</subject><subject>Neural circuitry</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Neurosciences</subject><subject>Observations</subject><subject>Phagocytosis - physiology</subject><subject>Physiology</subject><subject>Receptors, CCR2 - genetics</subject><subject>Receptors, CCR2 - metabolism</subject><subject>Receptors, Chemokine - genetics</subject><subject>Receptors, Chemokine - metabolism</subject><subject>Research and Analysis Methods</subject><subject>Rodents</subject><subject>Seizures - chemically induced</subject><subject>Seizures - physiopathology</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk99q2zAUxs3YWLtubzA2w25WaFJLliz5phC6bgn0H127WyHLkqviWJ5kh-a59oI7aZzSlF5sGGxx9Pu-o3OsE0UfUTJGKUOHd673jazHbWHdGCUJJln2KtpFlNAR45y-frLeid6FcAcMzjF_G-1ghjGnNNuN_pzr3jvwiafLVnupOruw3TL-ZkPX-yLEk-vL-Mwq7yovS6ubLhzEs3krrQ9DvLagPnOdrUF4EMumjK902Ssd4stbWTm17KyCkNJt53x8ct96HYJ1TXztbVVpb5sqnrQOdoMNh09MN_JVPL5plOvbGuD30Rsj66A_DN-96Ob7yfXxdHR68WN2PDkdKZaTbEQY4oqagqPU5IoqKiVGRucZ11C-1DzhqTJlVmDGUFmQpCgpzwtkFEsxxirdiz6vfdvaBTH0OwjEckYTkuY5ELM1UTp5J1pv59IvhZNWPAScr4T0UH2thSSqSEzGTEoJyQyTlBss4Z2pkqOHbEdDtr6Y61JBq72st0y3dxp7Kyq3EIRzlHMCBvtrg9tnsunkVKxiCcoSCpdggYD9OiTz7nevQyfmNihd17LRrocaoTkZSQmmgH55hr7ciYGqJBRrG-PgjGplKiYEriBOGFkdcfwCBU-p51a5RhsL8S3B_pYAmE7fd5XsQxCzn1f_wZ7_O3vxa5slaxbuZQhem8fmokSsRnHTELEaRTGMIsg-Pf2fj6LN7KV_AYKZMho</recordid><startdate>20160526</startdate><enddate>20160526</enddate><creator>Abiega, Oihane</creator><creator>Beccari, Sol</creator><creator>Diaz-Aparicio, Irune</creator><creator>Nadjar, Agnes</creator><creator>Layé, Sophie</creator><creator>Leyrolle, Quentin</creator><creator>Gómez-Nicola, Diego</creator><creator>Domercq, María</creator><creator>Pérez-Samartín, Alberto</creator><creator>Sánchez-Zafra, Víctor</creator><creator>Paris, Iñaki</creator><creator>Valero, Jorge</creator><creator>Savage, Julie C</creator><creator>Hui, Chin-Wai</creator><creator>Tremblay, Marie-Ève</creator><creator>Deudero, Juan J P</creator><creator>Brewster, Amy L</creator><creator>Anderson, Anne E</creator><creator>Zaldumbide, Laura</creator><creator>Galbarriatu, Lara</creator><creator>Marinas, Ainhoa</creator><creator>Vivanco, Maria dM</creator><creator>Matute, Carlos</creator><creator>Maletic-Savatic, Mirjana</creator><creator>Encinas, Juan M</creator><creator>Sierra, Amanda</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-3887-0277</orcidid><orcidid>https://orcid.org/0000-0003-3959-462X</orcidid><orcidid>https://orcid.org/0000-0003-2863-9626</orcidid><orcidid>https://orcid.org/0000-0001-8415-096X</orcidid><orcidid>https://orcid.org/0000-0002-0402-972X</orcidid><orcidid>https://orcid.org/0000-0002-5428-7823</orcidid><orcidid>https://orcid.org/0000-0003-0048-9005</orcidid><orcidid>https://orcid.org/0000-0001-6072-3313</orcidid><orcidid>https://orcid.org/0000-0002-3843-1012</orcidid></search><sort><creationdate>20160526</creationdate><title>Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling</title><author>Abiega, Oihane ; Beccari, Sol ; Diaz-Aparicio, Irune ; Nadjar, Agnes ; Layé, Sophie ; Leyrolle, Quentin ; Gómez-Nicola, Diego ; Domercq, María ; Pérez-Samartín, Alberto ; Sánchez-Zafra, Víctor ; Paris, Iñaki ; Valero, Jorge ; Savage, Julie C ; Hui, Chin-Wai ; Tremblay, Marie-Ève ; Deudero, Juan J P ; Brewster, Amy L ; Anderson, Anne E ; Zaldumbide, Laura ; Galbarriatu, Lara ; Marinas, Ainhoa ; Vivanco, Maria dM ; Matute, Carlos ; Maletic-Savatic, Mirjana ; Encinas, Juan M ; Sierra, Amanda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c7946-4718c5fb813f9c5c5aa21fe968e722ae8083cfd6b2771db40bd589b1fc73222c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Adult</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - physiology</topic><topic>Biology and Life Sciences</topic><topic>Brain research</topic><topic>Cell cycle</topic><topic>Chromatography</topic><topic>CX3C Chemokine Receptor 1</topic><topic>Cytokines</topic><topic>Efficiency</topic><topic>Epilepsy</topic><topic>Epilepsy, Temporal Lobe - physiopathology</topic><topic>Fatty acids</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Humans</topic><topic>Hyperactivity</topic><topic>Inflammation</topic><topic>Kainic Acid - toxicity</topic><topic>Leukocyte Common Antigens - metabolism</topic><topic>Life Sciences</topic><topic>Medicine and Health Sciences</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microglia - metabolism</topic><topic>Microglia - pathology</topic><topic>Microscopy</topic><topic>Monocytes - pathology</topic><topic>Motility</topic><topic>Neural circuitry</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Neurosciences</topic><topic>Observations</topic><topic>Phagocytosis - physiology</topic><topic>Physiology</topic><topic>Receptors, CCR2 - genetics</topic><topic>Receptors, CCR2 - metabolism</topic><topic>Receptors, Chemokine - genetics</topic><topic>Receptors, Chemokine - metabolism</topic><topic>Research and Analysis Methods</topic><topic>Rodents</topic><topic>Seizures - chemically induced</topic><topic>Seizures - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abiega, Oihane</creatorcontrib><creatorcontrib>Beccari, Sol</creatorcontrib><creatorcontrib>Diaz-Aparicio, Irune</creatorcontrib><creatorcontrib>Nadjar, Agnes</creatorcontrib><creatorcontrib>Layé, Sophie</creatorcontrib><creatorcontrib>Leyrolle, Quentin</creatorcontrib><creatorcontrib>Gómez-Nicola, Diego</creatorcontrib><creatorcontrib>Domercq, María</creatorcontrib><creatorcontrib>Pérez-Samartín, Alberto</creatorcontrib><creatorcontrib>Sánchez-Zafra, Víctor</creatorcontrib><creatorcontrib>Paris, Iñaki</creatorcontrib><creatorcontrib>Valero, Jorge</creatorcontrib><creatorcontrib>Savage, Julie C</creatorcontrib><creatorcontrib>Hui, Chin-Wai</creatorcontrib><creatorcontrib>Tremblay, Marie-Ève</creatorcontrib><creatorcontrib>Deudero, Juan J P</creatorcontrib><creatorcontrib>Brewster, Amy L</creatorcontrib><creatorcontrib>Anderson, Anne E</creatorcontrib><creatorcontrib>Zaldumbide, Laura</creatorcontrib><creatorcontrib>Galbarriatu, Lara</creatorcontrib><creatorcontrib>Marinas, Ainhoa</creatorcontrib><creatorcontrib>Vivanco, Maria dM</creatorcontrib><creatorcontrib>Matute, Carlos</creatorcontrib><creatorcontrib>Maletic-Savatic, Mirjana</creatorcontrib><creatorcontrib>Encinas, Juan M</creatorcontrib><creatorcontrib>Sierra, Amanda</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abiega, Oihane</au><au>Beccari, Sol</au><au>Diaz-Aparicio, Irune</au><au>Nadjar, Agnes</au><au>Layé, Sophie</au><au>Leyrolle, Quentin</au><au>Gómez-Nicola, Diego</au><au>Domercq, María</au><au>Pérez-Samartín, Alberto</au><au>Sánchez-Zafra, Víctor</au><au>Paris, Iñaki</au><au>Valero, Jorge</au><au>Savage, Julie C</au><au>Hui, Chin-Wai</au><au>Tremblay, Marie-Ève</au><au>Deudero, Juan J P</au><au>Brewster, Amy L</au><au>Anderson, Anne E</au><au>Zaldumbide, Laura</au><au>Galbarriatu, Lara</au><au>Marinas, Ainhoa</au><au>Vivanco, Maria dM</au><au>Matute, Carlos</au><au>Maletic-Savatic, Mirjana</au><au>Encinas, Juan M</au><au>Sierra, Amanda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2016-05-26</date><risdate>2016</risdate><volume>14</volume><issue>5</issue><spage>e1002466</spage><epage>48</epage><pages>e1002466-48</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate agonist NMDA) or inflammation in vivo (via systemic administration of bacterial lipopolysaccharides or by omega 3 fatty acid deficient diets), microglia resorted to different strategies to boost their phagocytic efficiency and compensate for the increased number of apoptotic cells, thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE) as well as in hippocampal tissue resected from individuals with MTLE, a major neurological disorder characterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor expression and was not directly mediated by signaling through microglial glutamate receptors. Instead, it was related to the disruption of local ATP microgradients caused by the hyperactivity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that was due not to decreased survival but to delayed cell clearance after seizures. These results demonstrate that the efficiency of microglial phagocytosis critically affects the dynamics of apoptosis and urge to routinely assess the microglial phagocytic efficiency in neurodegenerative disorders.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27228556</pmid><doi>10.1371/journal.pbio.1002466</doi><tpages>48</tpages><orcidid>https://orcid.org/0000-0002-3887-0277</orcidid><orcidid>https://orcid.org/0000-0003-3959-462X</orcidid><orcidid>https://orcid.org/0000-0003-2863-9626</orcidid><orcidid>https://orcid.org/0000-0001-8415-096X</orcidid><orcidid>https://orcid.org/0000-0002-0402-972X</orcidid><orcidid>https://orcid.org/0000-0002-5428-7823</orcidid><orcidid>https://orcid.org/0000-0003-0048-9005</orcidid><orcidid>https://orcid.org/0000-0001-6072-3313</orcidid><orcidid>https://orcid.org/0000-0002-3843-1012</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2016-05, Vol.14 (5), p.e1002466-48
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_1797504399
source PLoS; MEDLINE; PubMed; Directory of Open Access Journals; EZB Electronic Journals Library
subjects Adenosine triphosphatase
Adenosine Triphosphate - metabolism
Adult
Animals
Apoptosis
Apoptosis - physiology
Biology and Life Sciences
Brain research
Cell cycle
Chromatography
CX3C Chemokine Receptor 1
Cytokines
Efficiency
Epilepsy
Epilepsy, Temporal Lobe - physiopathology
Fatty acids
Gene expression
Genetic aspects
Humans
Hyperactivity
Inflammation
Kainic Acid - toxicity
Leukocyte Common Antigens - metabolism
Life Sciences
Medicine and Health Sciences
Mice, Inbred C57BL
Mice, Transgenic
Microglia - metabolism
Microglia - pathology
Microscopy
Monocytes - pathology
Motility
Neural circuitry
Neurons - metabolism
Neurons - pathology
Neurosciences
Observations
Phagocytosis - physiology
Physiology
Receptors, CCR2 - genetics
Receptors, CCR2 - metabolism
Receptors, Chemokine - genetics
Receptors, Chemokine - metabolism
Research and Analysis Methods
Rodents
Seizures - chemically induced
Seizures - physiopathology
title Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A56%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuronal%20Hyperactivity%20Disturbs%20ATP%20Microgradients,%20Impairs%20Microglial%20Motility,%20and%20Reduces%20Phagocytic%20Receptor%20Expression%20Triggering%20Apoptosis/Microglial%20Phagocytosis%20Uncoupling&rft.jtitle=PLoS%20biology&rft.au=Abiega,%20Oihane&rft.date=2016-05-26&rft.volume=14&rft.issue=5&rft.spage=e1002466&rft.epage=48&rft.pages=e1002466-48&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1002466&rft_dat=%3Cgale_plos_%3EA478820744%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1797504399&rft_id=info:pmid/27228556&rft_galeid=A478820744&rft_doaj_id=oai_doaj_org_article_a4cb0f67f35446f7a58f2aa586cd812c&rfr_iscdi=true