Leukemia Inhibitory Factor Enhances Endogenous Cardiomyocyte Regeneration after Myocardial Infarction

Cardiac stem cells or precursor cells regenerate cardiomyocytes; however, the mechanism underlying this effect remains unclear. We generated CreLacZ mice in which more than 99.9% of the cardiomyocytes in the left ventricular field were positive for 5-bromo-4-chloro-3-indolyl-β-d-galactoside (X-gal)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-05, Vol.11 (5), p.e0156562-e0156562
Hauptverfasser: Kanda, Masato, Nagai, Toshio, Takahashi, Toshinao, Liu, Mei Lan, Kondou, Naomichi, Naito, Atsuhiko T, Akazawa, Hiroshi, Sashida, Goro, Iwama, Atsushi, Komuro, Issei, Kobayashi, Yoshio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0156562
container_issue 5
container_start_page e0156562
container_title PloS one
container_volume 11
creator Kanda, Masato
Nagai, Toshio
Takahashi, Toshinao
Liu, Mei Lan
Kondou, Naomichi
Naito, Atsuhiko T
Akazawa, Hiroshi
Sashida, Goro
Iwama, Atsushi
Komuro, Issei
Kobayashi, Yoshio
description Cardiac stem cells or precursor cells regenerate cardiomyocytes; however, the mechanism underlying this effect remains unclear. We generated CreLacZ mice in which more than 99.9% of the cardiomyocytes in the left ventricular field were positive for 5-bromo-4-chloro-3-indolyl-β-d-galactoside (X-gal) staining immediately after tamoxifen injection. Three months after myocardial infarction (MI), the MI mice had more X-gal-negative (newly generated) cells than the control mice (3.04 ± 0.38/mm2, MI; 0.47 ± 0.16/mm2, sham; p < 0.05). The cardiac side population (CSP) cell fraction contained label-retaining cells, which differentiated into X-gal-negative cardiomyocytes after MI. We injected a leukemia inhibitory factor (LIF)-expression construct at the time of MI and identified a significant functional improvement in the LIF-treated group. At 1 month after MI, in the MI border and scar area, the LIF-injected mice had 31.41 ± 5.83 X-gal-negative cardiomyocytes/mm2, whereas the control mice had 12.34 ± 2.56 X-gal-negative cardiomyocytes/mm2 (p < 0.05). Using 5-ethynyl-2'-deoxyurinide (EdU) administration after MI, the percentages of EdU-positive CSP cells in the LIF-treated and control mice were 29.4 ± 2.7% and 10.6 ± 3.7%, respectively, which suggests that LIF influenced CSP proliferation. Moreover, LIF activated the Janus kinase (JAK)signal transducer and activator of transcription (STAT), mitogen-activated protein kinase/extracellular signal-regulated (MEK)extracellular signal-regulated kinase (ERK), and phosphatidylinositol 3-kinase (PI3K)-AKT pathways in CSPs in vivo and in vitro. The enhanced green fluorescent protein (EGFP)-bone marrow-chimeric CreLacZ mouse results indicated that LIF did not stimulate cardiogenesis via circulating bone marrow-derived cells during the 4 weeks following MI. Thus, LIF stimulates, in part, stem cell-derived cardiomyocyte regeneration by activating cardiac stem or precursor cells. This approach may represent a novel therapeutic strategy for cardiogenesis.
doi_str_mv 10.1371/journal.pone.0156562
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1791862542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A453533629</galeid><doaj_id>oai_doaj_org_article_951d8a3e902f48588e1d9e7b96dca34d</doaj_id><sourcerecordid>A453533629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-c75299cb1134fbb3d64dbc2a0f596f73de86b90c96f2ab766f972d3a697561383</originalsourceid><addsrcrecordid>eNqNk22L1DAQx4so3nn6DUQLguiLXZukeXojHMudLqwcnA9vwzRJd3N2mzVpxf32pm7v2MqBUsjDzG_-SSczWfYcFXNEOHp34_vQQjPf-dbOC0QZZfhBdookwTOGC_LwaH2SPYnxpigoEYw9zk4wx5iXBT_N7Mr23-3WQb5sN65ynQ_7_BJ0mvOLdgOttjEtjF_b1vcxX0Awzm_3Xu87m1_bZLYBOufbHOrOhvxTcg0MNEmxhqAH39PsUQ1NtM_G-Sz7ennxZfFxtrr6sFycr2aaY9qlkWIpdYUQKeuqIoaVptIYippKVnNirGCVLHTaYKg4Y7Xk2BBgklOGiCBn2cuD7q7xUY0ZigpxiQTDtMSJWB4I4-FG7YLbQtgrD079MfiwVhA6pxurJEVGALGywHUpqBAWGWl5JZnRQEqTtN6Pp_XV1hpt2y5AMxGdelq3UWv_U5VCIIlYEngzCgT_o7exU1sXtW0aaG1KtkKiEIyKUsh_o1xiwqQgZUJf_YXen4iRWkP6V9fWPl1RD6LqvKSEEsLwcOz8Hip9JtWMTpVXu2SfBLydBCSms7-6NfQxquXn6_9nr75N2ddH7MZC022ib_qhuuIULA-gDj7GYOu790CFGhrnNhtqaBw1Nk4Ke3H8lndBt51CfgNu0RNh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791862542</pqid></control><display><type>article</type><title>Leukemia Inhibitory Factor Enhances Endogenous Cardiomyocyte Regeneration after Myocardial Infarction</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kanda, Masato ; Nagai, Toshio ; Takahashi, Toshinao ; Liu, Mei Lan ; Kondou, Naomichi ; Naito, Atsuhiko T ; Akazawa, Hiroshi ; Sashida, Goro ; Iwama, Atsushi ; Komuro, Issei ; Kobayashi, Yoshio</creator><contributor>Limana, Federica</contributor><creatorcontrib>Kanda, Masato ; Nagai, Toshio ; Takahashi, Toshinao ; Liu, Mei Lan ; Kondou, Naomichi ; Naito, Atsuhiko T ; Akazawa, Hiroshi ; Sashida, Goro ; Iwama, Atsushi ; Komuro, Issei ; Kobayashi, Yoshio ; Limana, Federica</creatorcontrib><description>Cardiac stem cells or precursor cells regenerate cardiomyocytes; however, the mechanism underlying this effect remains unclear. We generated CreLacZ mice in which more than 99.9% of the cardiomyocytes in the left ventricular field were positive for 5-bromo-4-chloro-3-indolyl-β-d-galactoside (X-gal) staining immediately after tamoxifen injection. Three months after myocardial infarction (MI), the MI mice had more X-gal-negative (newly generated) cells than the control mice (3.04 ± 0.38/mm2, MI; 0.47 ± 0.16/mm2, sham; p &lt; 0.05). The cardiac side population (CSP) cell fraction contained label-retaining cells, which differentiated into X-gal-negative cardiomyocytes after MI. We injected a leukemia inhibitory factor (LIF)-expression construct at the time of MI and identified a significant functional improvement in the LIF-treated group. At 1 month after MI, in the MI border and scar area, the LIF-injected mice had 31.41 ± 5.83 X-gal-negative cardiomyocytes/mm2, whereas the control mice had 12.34 ± 2.56 X-gal-negative cardiomyocytes/mm2 (p &lt; 0.05). Using 5-ethynyl-2'-deoxyurinide (EdU) administration after MI, the percentages of EdU-positive CSP cells in the LIF-treated and control mice were 29.4 ± 2.7% and 10.6 ± 3.7%, respectively, which suggests that LIF influenced CSP proliferation. Moreover, LIF activated the Janus kinase (JAK)signal transducer and activator of transcription (STAT), mitogen-activated protein kinase/extracellular signal-regulated (MEK)extracellular signal-regulated kinase (ERK), and phosphatidylinositol 3-kinase (PI3K)-AKT pathways in CSPs in vivo and in vitro. The enhanced green fluorescent protein (EGFP)-bone marrow-chimeric CreLacZ mouse results indicated that LIF did not stimulate cardiogenesis via circulating bone marrow-derived cells during the 4 weeks following MI. Thus, LIF stimulates, in part, stem cell-derived cardiomyocyte regeneration by activating cardiac stem or precursor cells. This approach may represent a novel therapeutic strategy for cardiogenesis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0156562</identifier><identifier>PMID: 27227407</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>1-Phosphatidylinositol 3-kinase ; AKT protein ; Animals ; Biology and Life Sciences ; Bone marrow ; Cardiomyocytes ; Cell cycle ; Cell Proliferation - drug effects ; Cellular signal transduction ; Cytokines ; Diagnosis ; Disease Models, Animal ; Extracellular signal-regulated kinase ; Fibroblasts ; Fluorescence ; Green fluorescent protein ; Green fluorescent proteins ; Heart ; Heart attack ; Heart attacks ; Heart cells ; Heart diseases ; Heart failure ; Janus kinase ; Janus Kinases - metabolism ; Laboratory animals ; Leukemia ; Leukemia inhibitory factor ; Leukemia Inhibitory Factor - pharmacology ; MAP kinase ; MAP Kinase Kinase Kinases - metabolism ; MAP Kinase Signaling System - drug effects ; Medicine ; Medicine and Health Sciences ; Mice ; Mice, Transgenic ; Myocardial infarction ; Myocardial Infarction - drug therapy ; Myocardial Infarction - metabolism ; Myocardium - metabolism ; Myocytes, Cardiac - metabolism ; Phosphatidylinositol 3-Kinases - metabolism ; Physiological aspects ; Precursors ; Protein kinase ; Proto-Oncogene Proteins c-akt - metabolism ; Regeneration ; Regeneration - drug effects ; Research and analysis methods ; Risk factors ; Rodents ; STAT Transcription Factors - metabolism ; Stem cell transplantation ; Stem cells ; Stem Cells - metabolism ; Tamoxifen ; Transcription ; Transgenic animals ; University graduates ; Ventricle</subject><ispartof>PloS one, 2016-05, Vol.11 (5), p.e0156562-e0156562</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Kanda et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Kanda et al 2016 Kanda et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-c75299cb1134fbb3d64dbc2a0f596f73de86b90c96f2ab766f972d3a697561383</citedby><cites>FETCH-LOGICAL-c725t-c75299cb1134fbb3d64dbc2a0f596f73de86b90c96f2ab766f972d3a697561383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4881916/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4881916/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27227407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Limana, Federica</contributor><creatorcontrib>Kanda, Masato</creatorcontrib><creatorcontrib>Nagai, Toshio</creatorcontrib><creatorcontrib>Takahashi, Toshinao</creatorcontrib><creatorcontrib>Liu, Mei Lan</creatorcontrib><creatorcontrib>Kondou, Naomichi</creatorcontrib><creatorcontrib>Naito, Atsuhiko T</creatorcontrib><creatorcontrib>Akazawa, Hiroshi</creatorcontrib><creatorcontrib>Sashida, Goro</creatorcontrib><creatorcontrib>Iwama, Atsushi</creatorcontrib><creatorcontrib>Komuro, Issei</creatorcontrib><creatorcontrib>Kobayashi, Yoshio</creatorcontrib><title>Leukemia Inhibitory Factor Enhances Endogenous Cardiomyocyte Regeneration after Myocardial Infarction</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cardiac stem cells or precursor cells regenerate cardiomyocytes; however, the mechanism underlying this effect remains unclear. We generated CreLacZ mice in which more than 99.9% of the cardiomyocytes in the left ventricular field were positive for 5-bromo-4-chloro-3-indolyl-β-d-galactoside (X-gal) staining immediately after tamoxifen injection. Three months after myocardial infarction (MI), the MI mice had more X-gal-negative (newly generated) cells than the control mice (3.04 ± 0.38/mm2, MI; 0.47 ± 0.16/mm2, sham; p &lt; 0.05). The cardiac side population (CSP) cell fraction contained label-retaining cells, which differentiated into X-gal-negative cardiomyocytes after MI. We injected a leukemia inhibitory factor (LIF)-expression construct at the time of MI and identified a significant functional improvement in the LIF-treated group. At 1 month after MI, in the MI border and scar area, the LIF-injected mice had 31.41 ± 5.83 X-gal-negative cardiomyocytes/mm2, whereas the control mice had 12.34 ± 2.56 X-gal-negative cardiomyocytes/mm2 (p &lt; 0.05). Using 5-ethynyl-2'-deoxyurinide (EdU) administration after MI, the percentages of EdU-positive CSP cells in the LIF-treated and control mice were 29.4 ± 2.7% and 10.6 ± 3.7%, respectively, which suggests that LIF influenced CSP proliferation. Moreover, LIF activated the Janus kinase (JAK)signal transducer and activator of transcription (STAT), mitogen-activated protein kinase/extracellular signal-regulated (MEK)extracellular signal-regulated kinase (ERK), and phosphatidylinositol 3-kinase (PI3K)-AKT pathways in CSPs in vivo and in vitro. The enhanced green fluorescent protein (EGFP)-bone marrow-chimeric CreLacZ mouse results indicated that LIF did not stimulate cardiogenesis via circulating bone marrow-derived cells during the 4 weeks following MI. Thus, LIF stimulates, in part, stem cell-derived cardiomyocyte regeneration by activating cardiac stem or precursor cells. This approach may represent a novel therapeutic strategy for cardiogenesis.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Bone marrow</subject><subject>Cardiomyocytes</subject><subject>Cell cycle</subject><subject>Cell Proliferation - drug effects</subject><subject>Cellular signal transduction</subject><subject>Cytokines</subject><subject>Diagnosis</subject><subject>Disease Models, Animal</subject><subject>Extracellular signal-regulated kinase</subject><subject>Fibroblasts</subject><subject>Fluorescence</subject><subject>Green fluorescent protein</subject><subject>Green fluorescent proteins</subject><subject>Heart</subject><subject>Heart attack</subject><subject>Heart attacks</subject><subject>Heart cells</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Janus kinase</subject><subject>Janus Kinases - metabolism</subject><subject>Laboratory animals</subject><subject>Leukemia</subject><subject>Leukemia inhibitory factor</subject><subject>Leukemia Inhibitory Factor - pharmacology</subject><subject>MAP kinase</subject><subject>MAP Kinase Kinase Kinases - metabolism</subject><subject>MAP Kinase Signaling System - drug effects</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Myocardial infarction</subject><subject>Myocardial Infarction - drug therapy</subject><subject>Myocardial Infarction - metabolism</subject><subject>Myocardium - metabolism</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Physiological aspects</subject><subject>Precursors</subject><subject>Protein kinase</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Regeneration</subject><subject>Regeneration - drug effects</subject><subject>Research and analysis methods</subject><subject>Risk factors</subject><subject>Rodents</subject><subject>STAT Transcription Factors - metabolism</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Stem Cells - metabolism</subject><subject>Tamoxifen</subject><subject>Transcription</subject><subject>Transgenic animals</subject><subject>University graduates</subject><subject>Ventricle</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk22L1DAQx4so3nn6DUQLguiLXZukeXojHMudLqwcnA9vwzRJd3N2mzVpxf32pm7v2MqBUsjDzG_-SSczWfYcFXNEOHp34_vQQjPf-dbOC0QZZfhBdookwTOGC_LwaH2SPYnxpigoEYw9zk4wx5iXBT_N7Mr23-3WQb5sN65ynQ_7_BJ0mvOLdgOttjEtjF_b1vcxX0Awzm_3Xu87m1_bZLYBOufbHOrOhvxTcg0MNEmxhqAH39PsUQ1NtM_G-Sz7ennxZfFxtrr6sFycr2aaY9qlkWIpdYUQKeuqIoaVptIYippKVnNirGCVLHTaYKg4Y7Xk2BBgklOGiCBn2cuD7q7xUY0ZigpxiQTDtMSJWB4I4-FG7YLbQtgrD079MfiwVhA6pxurJEVGALGywHUpqBAWGWl5JZnRQEqTtN6Pp_XV1hpt2y5AMxGdelq3UWv_U5VCIIlYEngzCgT_o7exU1sXtW0aaG1KtkKiEIyKUsh_o1xiwqQgZUJf_YXen4iRWkP6V9fWPl1RD6LqvKSEEsLwcOz8Hip9JtWMTpVXu2SfBLydBCSms7-6NfQxquXn6_9nr75N2ddH7MZC022ib_qhuuIULA-gDj7GYOu790CFGhrnNhtqaBw1Nk4Ke3H8lndBt51CfgNu0RNh</recordid><startdate>20160526</startdate><enddate>20160526</enddate><creator>Kanda, Masato</creator><creator>Nagai, Toshio</creator><creator>Takahashi, Toshinao</creator><creator>Liu, Mei Lan</creator><creator>Kondou, Naomichi</creator><creator>Naito, Atsuhiko T</creator><creator>Akazawa, Hiroshi</creator><creator>Sashida, Goro</creator><creator>Iwama, Atsushi</creator><creator>Komuro, Issei</creator><creator>Kobayashi, Yoshio</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160526</creationdate><title>Leukemia Inhibitory Factor Enhances Endogenous Cardiomyocyte Regeneration after Myocardial Infarction</title><author>Kanda, Masato ; Nagai, Toshio ; Takahashi, Toshinao ; Liu, Mei Lan ; Kondou, Naomichi ; Naito, Atsuhiko T ; Akazawa, Hiroshi ; Sashida, Goro ; Iwama, Atsushi ; Komuro, Issei ; Kobayashi, Yoshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-c75299cb1134fbb3d64dbc2a0f596f73de86b90c96f2ab766f972d3a697561383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Bone marrow</topic><topic>Cardiomyocytes</topic><topic>Cell cycle</topic><topic>Cell Proliferation - drug effects</topic><topic>Cellular signal transduction</topic><topic>Cytokines</topic><topic>Diagnosis</topic><topic>Disease Models, Animal</topic><topic>Extracellular signal-regulated kinase</topic><topic>Fibroblasts</topic><topic>Fluorescence</topic><topic>Green fluorescent protein</topic><topic>Green fluorescent proteins</topic><topic>Heart</topic><topic>Heart attack</topic><topic>Heart attacks</topic><topic>Heart cells</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Janus kinase</topic><topic>Janus Kinases - metabolism</topic><topic>Laboratory animals</topic><topic>Leukemia</topic><topic>Leukemia inhibitory factor</topic><topic>Leukemia Inhibitory Factor - pharmacology</topic><topic>MAP kinase</topic><topic>MAP Kinase Kinase Kinases - metabolism</topic><topic>MAP Kinase Signaling System - drug effects</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Myocardial infarction</topic><topic>Myocardial Infarction - drug therapy</topic><topic>Myocardial Infarction - metabolism</topic><topic>Myocardium - metabolism</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Physiological aspects</topic><topic>Precursors</topic><topic>Protein kinase</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Regeneration</topic><topic>Regeneration - drug effects</topic><topic>Research and analysis methods</topic><topic>Risk factors</topic><topic>Rodents</topic><topic>STAT Transcription Factors - metabolism</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Stem Cells - metabolism</topic><topic>Tamoxifen</topic><topic>Transcription</topic><topic>Transgenic animals</topic><topic>University graduates</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanda, Masato</creatorcontrib><creatorcontrib>Nagai, Toshio</creatorcontrib><creatorcontrib>Takahashi, Toshinao</creatorcontrib><creatorcontrib>Liu, Mei Lan</creatorcontrib><creatorcontrib>Kondou, Naomichi</creatorcontrib><creatorcontrib>Naito, Atsuhiko T</creatorcontrib><creatorcontrib>Akazawa, Hiroshi</creatorcontrib><creatorcontrib>Sashida, Goro</creatorcontrib><creatorcontrib>Iwama, Atsushi</creatorcontrib><creatorcontrib>Komuro, Issei</creatorcontrib><creatorcontrib>Kobayashi, Yoshio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanda, Masato</au><au>Nagai, Toshio</au><au>Takahashi, Toshinao</au><au>Liu, Mei Lan</au><au>Kondou, Naomichi</au><au>Naito, Atsuhiko T</au><au>Akazawa, Hiroshi</au><au>Sashida, Goro</au><au>Iwama, Atsushi</au><au>Komuro, Issei</au><au>Kobayashi, Yoshio</au><au>Limana, Federica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leukemia Inhibitory Factor Enhances Endogenous Cardiomyocyte Regeneration after Myocardial Infarction</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-05-26</date><risdate>2016</risdate><volume>11</volume><issue>5</issue><spage>e0156562</spage><epage>e0156562</epage><pages>e0156562-e0156562</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cardiac stem cells or precursor cells regenerate cardiomyocytes; however, the mechanism underlying this effect remains unclear. We generated CreLacZ mice in which more than 99.9% of the cardiomyocytes in the left ventricular field were positive for 5-bromo-4-chloro-3-indolyl-β-d-galactoside (X-gal) staining immediately after tamoxifen injection. Three months after myocardial infarction (MI), the MI mice had more X-gal-negative (newly generated) cells than the control mice (3.04 ± 0.38/mm2, MI; 0.47 ± 0.16/mm2, sham; p &lt; 0.05). The cardiac side population (CSP) cell fraction contained label-retaining cells, which differentiated into X-gal-negative cardiomyocytes after MI. We injected a leukemia inhibitory factor (LIF)-expression construct at the time of MI and identified a significant functional improvement in the LIF-treated group. At 1 month after MI, in the MI border and scar area, the LIF-injected mice had 31.41 ± 5.83 X-gal-negative cardiomyocytes/mm2, whereas the control mice had 12.34 ± 2.56 X-gal-negative cardiomyocytes/mm2 (p &lt; 0.05). Using 5-ethynyl-2'-deoxyurinide (EdU) administration after MI, the percentages of EdU-positive CSP cells in the LIF-treated and control mice were 29.4 ± 2.7% and 10.6 ± 3.7%, respectively, which suggests that LIF influenced CSP proliferation. Moreover, LIF activated the Janus kinase (JAK)signal transducer and activator of transcription (STAT), mitogen-activated protein kinase/extracellular signal-regulated (MEK)extracellular signal-regulated kinase (ERK), and phosphatidylinositol 3-kinase (PI3K)-AKT pathways in CSPs in vivo and in vitro. The enhanced green fluorescent protein (EGFP)-bone marrow-chimeric CreLacZ mouse results indicated that LIF did not stimulate cardiogenesis via circulating bone marrow-derived cells during the 4 weeks following MI. Thus, LIF stimulates, in part, stem cell-derived cardiomyocyte regeneration by activating cardiac stem or precursor cells. This approach may represent a novel therapeutic strategy for cardiogenesis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27227407</pmid><doi>10.1371/journal.pone.0156562</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-05, Vol.11 (5), p.e0156562-e0156562
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1791862542
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 1-Phosphatidylinositol 3-kinase
AKT protein
Animals
Biology and Life Sciences
Bone marrow
Cardiomyocytes
Cell cycle
Cell Proliferation - drug effects
Cellular signal transduction
Cytokines
Diagnosis
Disease Models, Animal
Extracellular signal-regulated kinase
Fibroblasts
Fluorescence
Green fluorescent protein
Green fluorescent proteins
Heart
Heart attack
Heart attacks
Heart cells
Heart diseases
Heart failure
Janus kinase
Janus Kinases - metabolism
Laboratory animals
Leukemia
Leukemia inhibitory factor
Leukemia Inhibitory Factor - pharmacology
MAP kinase
MAP Kinase Kinase Kinases - metabolism
MAP Kinase Signaling System - drug effects
Medicine
Medicine and Health Sciences
Mice
Mice, Transgenic
Myocardial infarction
Myocardial Infarction - drug therapy
Myocardial Infarction - metabolism
Myocardium - metabolism
Myocytes, Cardiac - metabolism
Phosphatidylinositol 3-Kinases - metabolism
Physiological aspects
Precursors
Protein kinase
Proto-Oncogene Proteins c-akt - metabolism
Regeneration
Regeneration - drug effects
Research and analysis methods
Risk factors
Rodents
STAT Transcription Factors - metabolism
Stem cell transplantation
Stem cells
Stem Cells - metabolism
Tamoxifen
Transcription
Transgenic animals
University graduates
Ventricle
title Leukemia Inhibitory Factor Enhances Endogenous Cardiomyocyte Regeneration after Myocardial Infarction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T00%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leukemia%20Inhibitory%20Factor%20Enhances%20Endogenous%20Cardiomyocyte%20Regeneration%20after%20Myocardial%20Infarction&rft.jtitle=PloS%20one&rft.au=Kanda,%20Masato&rft.date=2016-05-26&rft.volume=11&rft.issue=5&rft.spage=e0156562&rft.epage=e0156562&rft.pages=e0156562-e0156562&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0156562&rft_dat=%3Cgale_plos_%3EA453533629%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1791862542&rft_id=info:pmid/27227407&rft_galeid=A453533629&rft_doaj_id=oai_doaj_org_article_951d8a3e902f48588e1d9e7b96dca34d&rfr_iscdi=true