A New Approach for On-Demand Generation of Various Oxygen Tensions for In Vitro Hypoxia Models

The development of in vitro disease models closely mimicking the functions of human disease has captured increasing attention in recent years. Oxygen tensions and gradients play essential roles in modulating biological systems in both physiologic and pathologic events. Thus, controlling oxygen tensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-05, Vol.11 (5), p.e0155921-e0155921
Hauptverfasser: Li, Chunyan, Chaung, Wayne, Mozayan, Cameron, Chabra, Ranjeev, Wang, Ping, Narayan, Raj K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0155921
container_issue 5
container_start_page e0155921
container_title PloS one
container_volume 11
creator Li, Chunyan
Chaung, Wayne
Mozayan, Cameron
Chabra, Ranjeev
Wang, Ping
Narayan, Raj K
description The development of in vitro disease models closely mimicking the functions of human disease has captured increasing attention in recent years. Oxygen tensions and gradients play essential roles in modulating biological systems in both physiologic and pathologic events. Thus, controlling oxygen tension is critical for mimicking physiologically relevant in vivo environments for cell, tissue and organ research. We present a new approach for on-demand generation of various oxygen tensions for in vitro hypoxia models. Proof-of-concept prototypes have been developed for conventional cell culture microplate by immobilizing a novel oxygen-consuming biomaterial on the 3D-printed insert. For the first time, rapid (~3.8 minutes to reach 0.5% O2 from 20.9% O2) and precisely controlled oxygen tensions/gradients (2.68 mmHg per 50 μm distance) were generated by exposing the biocompatible biomaterial to the different depth of cell culture media. In addition, changing the position of 3D-printed inserts with immobilized biomaterials relative to the cultured cells resulted in controllable and rapid changes in oxygen tensions (
doi_str_mv 10.1371/journal.pone.0155921
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1790963621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A453359830</galeid><doaj_id>oai_doaj_org_article_77d9a5188d42469b9d769586f0b36272</doaj_id><sourcerecordid>A453359830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-de8db1af673f49a1ad7972e8e2df202493cd0e7701626e8eddf0ada34405ff093</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBYQkJw0eKPxI5vJlUDtkqDSjB6ieXGdusqtYudQPvvcdZsatAuUC4cHT_ve-zjc7LsJYJjRBj6sPZtcLIeb73TY4iKgmP0KDtFnOARxZA8Pvo_yZ7FuIawICWlT7MTzDDikLLT7OcEfNV_wGS7DV5WK2B8ADM3-qg30ilwqZ0OsrHeAW_AXAbr2whmu_1SO3CjXUw78VYzdWBum-DB1X7rd1aCL17pOj7PnhhZR_2iX8-yH58_3Vxcja5nl9OLyfWoohw3I6VLtUDSUEZMziWSinGGdamxMhjinJNKQc0YRBTTFFbKQKkkyXNYGAM5OcteH3y3tY-iL00UiHHIKaEYJWJ6IJSXa7ENdiPDXnhpxW3Ah6WQobFVrQVjissClaXKcU75gitGeVFSAxfJiuHkdd5naxcbrSrtmiDrgelwx9mVWPrfIi9ZyXhn8K43CP5Xq2MjNjZWuq6l06nC3bkRIyhlS-ibf9CHb9dTS5kuYJ3xKW_VmYpJXhBS8JLARI0foNKn9MZWqY-MTfGB4P1AkJhG75qlbGMU0-_f_p-dzYfs2yN2pWXdrKKv267T4hDMD2AVfIxBm_siIyi6MbirhujGQPRjkGSvjh_oXnTX9-QvoewApQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790963621</pqid></control><display><type>article</type><title>A New Approach for On-Demand Generation of Various Oxygen Tensions for In Vitro Hypoxia Models</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Chunyan ; Chaung, Wayne ; Mozayan, Cameron ; Chabra, Ranjeev ; Wang, Ping ; Narayan, Raj K</creator><contributor>Zhao, Feng</contributor><creatorcontrib>Li, Chunyan ; Chaung, Wayne ; Mozayan, Cameron ; Chabra, Ranjeev ; Wang, Ping ; Narayan, Raj K ; Zhao, Feng</creatorcontrib><description>The development of in vitro disease models closely mimicking the functions of human disease has captured increasing attention in recent years. Oxygen tensions and gradients play essential roles in modulating biological systems in both physiologic and pathologic events. Thus, controlling oxygen tension is critical for mimicking physiologically relevant in vivo environments for cell, tissue and organ research. We present a new approach for on-demand generation of various oxygen tensions for in vitro hypoxia models. Proof-of-concept prototypes have been developed for conventional cell culture microplate by immobilizing a novel oxygen-consuming biomaterial on the 3D-printed insert. For the first time, rapid (~3.8 minutes to reach 0.5% O2 from 20.9% O2) and precisely controlled oxygen tensions/gradients (2.68 mmHg per 50 μm distance) were generated by exposing the biocompatible biomaterial to the different depth of cell culture media. In addition, changing the position of 3D-printed inserts with immobilized biomaterials relative to the cultured cells resulted in controllable and rapid changes in oxygen tensions (&lt;130 seconds). Compared to the current technologies, our approach allows enhanced spatiotemporal resolution and accuracy of the oxygen tensions. Additionally, it does not interfere with the testing environment while maintaining ease of use. The elegance of oxygen tension manipulation introduced by our new approach will drastically improve control and lower the technological barrier of entry for hypoxia studies. Since the biomaterials can be immobilized in any devices, including microfluidic devices and 3D-printed tissues or organs, it will serve as the basis for a new generation of experimental models previously impossible or very difficult to implement.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0155921</identifier><identifier>PMID: 27219067</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>3-D printers ; Animals ; Anoxia ; Apoptosis ; Biocompatibility ; Biocompatible Materials - chemistry ; Biology and Life Sciences ; Biomaterials ; Biomedical materials ; Cell culture ; Cell Culture Techniques - instrumentation ; Cells, Cultured ; Culture media ; Disease ; Enzymes ; Glucose ; Hydrogen peroxide ; Hypoxia ; Hypoxia - metabolism ; In Vitro Techniques ; In vivo methods and tests ; Inserts ; Ischemia ; Lab-On-A-Chip Devices ; Laboratories ; Macrophages - cytology ; Macrophages - metabolism ; Media (culture) ; Medical research ; Medicine ; Medicine and Health Sciences ; Microfluidics ; Mimicry ; Models, Biological ; Neurosurgery ; Organs ; Oxygen ; Oxygen - metabolism ; Oxygen tension ; Physical Sciences ; Physiological aspects ; Printing, Three-Dimensional ; Prototypes ; Rats ; Research and Analysis Methods ; Rodents ; Stability ; Stem cells ; Tension ; Three dimensional printing ; Tumor necrosis factor-TNF</subject><ispartof>PloS one, 2016-05, Vol.11 (5), p.e0155921-e0155921</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Li et al 2016 Li et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-de8db1af673f49a1ad7972e8e2df202493cd0e7701626e8eddf0ada34405ff093</citedby><cites>FETCH-LOGICAL-c692t-de8db1af673f49a1ad7972e8e2df202493cd0e7701626e8eddf0ada34405ff093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878792/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878792/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2919,23857,27915,27916,53782,53784,79361,79362</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27219067$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhao, Feng</contributor><creatorcontrib>Li, Chunyan</creatorcontrib><creatorcontrib>Chaung, Wayne</creatorcontrib><creatorcontrib>Mozayan, Cameron</creatorcontrib><creatorcontrib>Chabra, Ranjeev</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Narayan, Raj K</creatorcontrib><title>A New Approach for On-Demand Generation of Various Oxygen Tensions for In Vitro Hypoxia Models</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The development of in vitro disease models closely mimicking the functions of human disease has captured increasing attention in recent years. Oxygen tensions and gradients play essential roles in modulating biological systems in both physiologic and pathologic events. Thus, controlling oxygen tension is critical for mimicking physiologically relevant in vivo environments for cell, tissue and organ research. We present a new approach for on-demand generation of various oxygen tensions for in vitro hypoxia models. Proof-of-concept prototypes have been developed for conventional cell culture microplate by immobilizing a novel oxygen-consuming biomaterial on the 3D-printed insert. For the first time, rapid (~3.8 minutes to reach 0.5% O2 from 20.9% O2) and precisely controlled oxygen tensions/gradients (2.68 mmHg per 50 μm distance) were generated by exposing the biocompatible biomaterial to the different depth of cell culture media. In addition, changing the position of 3D-printed inserts with immobilized biomaterials relative to the cultured cells resulted in controllable and rapid changes in oxygen tensions (&lt;130 seconds). Compared to the current technologies, our approach allows enhanced spatiotemporal resolution and accuracy of the oxygen tensions. Additionally, it does not interfere with the testing environment while maintaining ease of use. The elegance of oxygen tension manipulation introduced by our new approach will drastically improve control and lower the technological barrier of entry for hypoxia studies. Since the biomaterials can be immobilized in any devices, including microfluidic devices and 3D-printed tissues or organs, it will serve as the basis for a new generation of experimental models previously impossible or very difficult to implement.</description><subject>3-D printers</subject><subject>Animals</subject><subject>Anoxia</subject><subject>Apoptosis</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biology and Life Sciences</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cell culture</subject><subject>Cell Culture Techniques - instrumentation</subject><subject>Cells, Cultured</subject><subject>Culture media</subject><subject>Disease</subject><subject>Enzymes</subject><subject>Glucose</subject><subject>Hydrogen peroxide</subject><subject>Hypoxia</subject><subject>Hypoxia - metabolism</subject><subject>In Vitro Techniques</subject><subject>In vivo methods and tests</subject><subject>Inserts</subject><subject>Ischemia</subject><subject>Lab-On-A-Chip Devices</subject><subject>Laboratories</subject><subject>Macrophages - cytology</subject><subject>Macrophages - metabolism</subject><subject>Media (culture)</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Microfluidics</subject><subject>Mimicry</subject><subject>Models, Biological</subject><subject>Neurosurgery</subject><subject>Organs</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Oxygen tension</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Printing, Three-Dimensional</subject><subject>Prototypes</subject><subject>Rats</subject><subject>Research and Analysis Methods</subject><subject>Rodents</subject><subject>Stability</subject><subject>Stem cells</subject><subject>Tension</subject><subject>Three dimensional printing</subject><subject>Tumor necrosis factor-TNF</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBYQkJw0eKPxI5vJlUDtkqDSjB6ieXGdusqtYudQPvvcdZsatAuUC4cHT_ve-zjc7LsJYJjRBj6sPZtcLIeb73TY4iKgmP0KDtFnOARxZA8Pvo_yZ7FuIawICWlT7MTzDDikLLT7OcEfNV_wGS7DV5WK2B8ADM3-qg30ilwqZ0OsrHeAW_AXAbr2whmu_1SO3CjXUw78VYzdWBum-DB1X7rd1aCL17pOj7PnhhZR_2iX8-yH58_3Vxcja5nl9OLyfWoohw3I6VLtUDSUEZMziWSinGGdamxMhjinJNKQc0YRBTTFFbKQKkkyXNYGAM5OcteH3y3tY-iL00UiHHIKaEYJWJ6IJSXa7ENdiPDXnhpxW3Ah6WQobFVrQVjissClaXKcU75gitGeVFSAxfJiuHkdd5naxcbrSrtmiDrgelwx9mVWPrfIi9ZyXhn8K43CP5Xq2MjNjZWuq6l06nC3bkRIyhlS-ibf9CHb9dTS5kuYJ3xKW_VmYpJXhBS8JLARI0foNKn9MZWqY-MTfGB4P1AkJhG75qlbGMU0-_f_p-dzYfs2yN2pWXdrKKv267T4hDMD2AVfIxBm_siIyi6MbirhujGQPRjkGSvjh_oXnTX9-QvoewApQ</recordid><startdate>20160524</startdate><enddate>20160524</enddate><creator>Li, Chunyan</creator><creator>Chaung, Wayne</creator><creator>Mozayan, Cameron</creator><creator>Chabra, Ranjeev</creator><creator>Wang, Ping</creator><creator>Narayan, Raj K</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160524</creationdate><title>A New Approach for On-Demand Generation of Various Oxygen Tensions for In Vitro Hypoxia Models</title><author>Li, Chunyan ; Chaung, Wayne ; Mozayan, Cameron ; Chabra, Ranjeev ; Wang, Ping ; Narayan, Raj K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-de8db1af673f49a1ad7972e8e2df202493cd0e7701626e8eddf0ada34405ff093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>3-D printers</topic><topic>Animals</topic><topic>Anoxia</topic><topic>Apoptosis</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biology and Life Sciences</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cell culture</topic><topic>Cell Culture Techniques - instrumentation</topic><topic>Cells, Cultured</topic><topic>Culture media</topic><topic>Disease</topic><topic>Enzymes</topic><topic>Glucose</topic><topic>Hydrogen peroxide</topic><topic>Hypoxia</topic><topic>Hypoxia - metabolism</topic><topic>In Vitro Techniques</topic><topic>In vivo methods and tests</topic><topic>Inserts</topic><topic>Ischemia</topic><topic>Lab-On-A-Chip Devices</topic><topic>Laboratories</topic><topic>Macrophages - cytology</topic><topic>Macrophages - metabolism</topic><topic>Media (culture)</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Microfluidics</topic><topic>Mimicry</topic><topic>Models, Biological</topic><topic>Neurosurgery</topic><topic>Organs</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Oxygen tension</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Printing, Three-Dimensional</topic><topic>Prototypes</topic><topic>Rats</topic><topic>Research and Analysis Methods</topic><topic>Rodents</topic><topic>Stability</topic><topic>Stem cells</topic><topic>Tension</topic><topic>Three dimensional printing</topic><topic>Tumor necrosis factor-TNF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chunyan</creatorcontrib><creatorcontrib>Chaung, Wayne</creatorcontrib><creatorcontrib>Mozayan, Cameron</creatorcontrib><creatorcontrib>Chabra, Ranjeev</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Narayan, Raj K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chunyan</au><au>Chaung, Wayne</au><au>Mozayan, Cameron</au><au>Chabra, Ranjeev</au><au>Wang, Ping</au><au>Narayan, Raj K</au><au>Zhao, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Approach for On-Demand Generation of Various Oxygen Tensions for In Vitro Hypoxia Models</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-05-24</date><risdate>2016</risdate><volume>11</volume><issue>5</issue><spage>e0155921</spage><epage>e0155921</epage><pages>e0155921-e0155921</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The development of in vitro disease models closely mimicking the functions of human disease has captured increasing attention in recent years. Oxygen tensions and gradients play essential roles in modulating biological systems in both physiologic and pathologic events. Thus, controlling oxygen tension is critical for mimicking physiologically relevant in vivo environments for cell, tissue and organ research. We present a new approach for on-demand generation of various oxygen tensions for in vitro hypoxia models. Proof-of-concept prototypes have been developed for conventional cell culture microplate by immobilizing a novel oxygen-consuming biomaterial on the 3D-printed insert. For the first time, rapid (~3.8 minutes to reach 0.5% O2 from 20.9% O2) and precisely controlled oxygen tensions/gradients (2.68 mmHg per 50 μm distance) were generated by exposing the biocompatible biomaterial to the different depth of cell culture media. In addition, changing the position of 3D-printed inserts with immobilized biomaterials relative to the cultured cells resulted in controllable and rapid changes in oxygen tensions (&lt;130 seconds). Compared to the current technologies, our approach allows enhanced spatiotemporal resolution and accuracy of the oxygen tensions. Additionally, it does not interfere with the testing environment while maintaining ease of use. The elegance of oxygen tension manipulation introduced by our new approach will drastically improve control and lower the technological barrier of entry for hypoxia studies. Since the biomaterials can be immobilized in any devices, including microfluidic devices and 3D-printed tissues or organs, it will serve as the basis for a new generation of experimental models previously impossible or very difficult to implement.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27219067</pmid><doi>10.1371/journal.pone.0155921</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-05, Vol.11 (5), p.e0155921-e0155921
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1790963621
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects 3-D printers
Animals
Anoxia
Apoptosis
Biocompatibility
Biocompatible Materials - chemistry
Biology and Life Sciences
Biomaterials
Biomedical materials
Cell culture
Cell Culture Techniques - instrumentation
Cells, Cultured
Culture media
Disease
Enzymes
Glucose
Hydrogen peroxide
Hypoxia
Hypoxia - metabolism
In Vitro Techniques
In vivo methods and tests
Inserts
Ischemia
Lab-On-A-Chip Devices
Laboratories
Macrophages - cytology
Macrophages - metabolism
Media (culture)
Medical research
Medicine
Medicine and Health Sciences
Microfluidics
Mimicry
Models, Biological
Neurosurgery
Organs
Oxygen
Oxygen - metabolism
Oxygen tension
Physical Sciences
Physiological aspects
Printing, Three-Dimensional
Prototypes
Rats
Research and Analysis Methods
Rodents
Stability
Stem cells
Tension
Three dimensional printing
Tumor necrosis factor-TNF
title A New Approach for On-Demand Generation of Various Oxygen Tensions for In Vitro Hypoxia Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Approach%20for%20On-Demand%20Generation%20of%20Various%20Oxygen%20Tensions%20for%20In%20Vitro%20Hypoxia%20Models&rft.jtitle=PloS%20one&rft.au=Li,%20Chunyan&rft.date=2016-05-24&rft.volume=11&rft.issue=5&rft.spage=e0155921&rft.epage=e0155921&rft.pages=e0155921-e0155921&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0155921&rft_dat=%3Cgale_plos_%3EA453359830%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790963621&rft_id=info:pmid/27219067&rft_galeid=A453359830&rft_doaj_id=oai_doaj_org_article_77d9a5188d42469b9d769586f0b36272&rfr_iscdi=true