Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line
Self-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal-for example, because cycling cells exhaust their replicative capacity and become sen...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2016-04, Vol.12 (4), p.e1005985-e1005985 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1005985 |
---|---|
container_issue | 4 |
container_start_page | e1005985 |
container_title | PLoS genetics |
container_volume | 12 |
creator | Cinquin, Amanda Chiang, Michael Paz, Adrian Hallman, Sam Yuan, Oliver Vysniauskaite, Indre Fowlkes, Charless C Cinquin, Olivier |
description | Self-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal-for example, because cycling cells exhaust their replicative capacity and become senescent. Here we assay the relationship between stem cell cycling and senescence in the Caenorhabditis elegans reproductive system, defining this senescence as the progressive decline in "reproductive capacity," i.e. in the number of progeny that can be produced until cessation of reproduction. We show that stem cell cycling diminishes remaining reproductive capacity, at least in part through the DNA damage response. Paradoxically, gonads kept under conditions that preclude reproduction keep cycling and producing cells that undergo apoptosis or are laid as unfertilized gametes, thus squandering reproductive capacity. We show that continued activity is in fact beneficial inasmuch as gonads that are active when reproduction is initiated have more sustained early progeny production. Intriguingly, continued cycling is intermittent-gonads switch between active and dormant states-and in all likelihood stochastic. Other organs face tradeoffs whereby stem cell cycling has the beneficial effect of providing freshly-differentiated cells and the detrimental effect of increasing the likelihood of cancer or senescence; stochastic stem cell cycling may allow for a subset of cells to preserve proliferative potential in old age, which may implement a strategy to deal with uncertainty as to the total amount of proliferation to be undergone over an organism's lifespan. |
doi_str_mv | 10.1371/journal.pgen.1005985 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1789552234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A479543217</galeid><doaj_id>oai_doaj_org_article_0d8f288754a442be8167de9c16ba89dd</doaj_id><sourcerecordid>A479543217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c759t-9921c4c45dd48ec1459880a7dd48be5b8e352a2452d2307fc3bb4c641df5015f3</originalsourceid><addsrcrecordid>eNqVk9Fu0zAUhiMEYmPwBggiISG4aLFju7ZvkEYFo1LFpBW4tRznJM3k2l3sAnt7nDWbGrSLIV_YPv7Of-zfOln2EqMpJhx_uPS7zmk73TbgphghJgV7lB1jxsiEU0QfH6yPsmchXCJEmJD8aXZUcMQ5Eew4UwsXodu0MYKL-SrCJp-Dtfn82tjWNfknbbUzEPIV2HpyAQ5-a5trV6WAg2AgHea-zuMa8vk0BwuNdiE_S5r5snXwPHtSaxvgxTCfZD--fP4-_zpZnp8t5qfLieFMxomUBTbUUFZVVIDBNL1GIM37bQmsFEBYoQvKiqogiNeGlCU1M4qrmiHManKSvd7rbq0PavAmKMyFZKwoCE3EYk9UXl-qbddudHetvG7VTcB3jdJdbI0FhSpRF0JwRjWlRQkCz3gF0uBZqYWsqqT1cai2KzdQJRdip-1IdHzi2rVq_C9FBcECFUng3SDQ-asdhKg2bTLTJrPB7_p7S0qllJg_ABWYEYFkj775B73fiIFqdHpr62qfrmh6UXVKuWSUFDdlp_dQaVSwaY13ULcpPkp4P0pITIQ_sdG7ENRidfEf7LeHs-c_x-zbA3YN2sZ18HYXW-_CGKR70HQ-hA7qu7_DSPXtdeuc6ttLDe2V0l4d_vtd0m0_kb-Tvhxr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789552234</pqid></control><display><type>article</type><title>Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Cinquin, Amanda ; Chiang, Michael ; Paz, Adrian ; Hallman, Sam ; Yuan, Oliver ; Vysniauskaite, Indre ; Fowlkes, Charless C ; Cinquin, Olivier</creator><creatorcontrib>Cinquin, Amanda ; Chiang, Michael ; Paz, Adrian ; Hallman, Sam ; Yuan, Oliver ; Vysniauskaite, Indre ; Fowlkes, Charless C ; Cinquin, Olivier</creatorcontrib><description>Self-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal-for example, because cycling cells exhaust their replicative capacity and become senescent. Here we assay the relationship between stem cell cycling and senescence in the Caenorhabditis elegans reproductive system, defining this senescence as the progressive decline in "reproductive capacity," i.e. in the number of progeny that can be produced until cessation of reproduction. We show that stem cell cycling diminishes remaining reproductive capacity, at least in part through the DNA damage response. Paradoxically, gonads kept under conditions that preclude reproduction keep cycling and producing cells that undergo apoptosis or are laid as unfertilized gametes, thus squandering reproductive capacity. We show that continued activity is in fact beneficial inasmuch as gonads that are active when reproduction is initiated have more sustained early progeny production. Intriguingly, continued cycling is intermittent-gonads switch between active and dormant states-and in all likelihood stochastic. Other organs face tradeoffs whereby stem cell cycling has the beneficial effect of providing freshly-differentiated cells and the detrimental effect of increasing the likelihood of cancer or senescence; stochastic stem cell cycling may allow for a subset of cells to preserve proliferative potential in old age, which may implement a strategy to deal with uncertainty as to the total amount of proliferation to be undergone over an organism's lifespan.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1005985</identifier><identifier>PMID: 27077385</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Age ; Aging ; Aging (Biology) ; Aging - physiology ; Animal reproduction ; Animals ; Apoptosis - genetics ; Biology and Life Sciences ; Caenorhabditis elegans ; Caenorhabditis elegans - physiology ; Caenorhabditis elegans Proteins - genetics ; Cancer ; Cell cycle ; Cell Self Renewal - physiology ; Cellular Senescence - genetics ; Cellular Senescence - physiology ; Confidence intervals ; Deoxyribonucleic acid ; DNA ; DNA Damage - genetics ; DNA Repair - genetics ; DNA-Binding Proteins - genetics ; Female ; Gene expression ; Genes ; Genetic aspects ; Grants ; Histograms ; M Phase Cell Cycle Checkpoints - genetics ; Medicine and Health Sciences ; Mutation ; Observations ; Ovary - physiology ; Replication Protein A - genetics ; Reproduction - physiology ; Reproductive system ; Research and Analysis Methods ; Senescence ; Sperm ; Starvation - physiopathology ; Stem Cells ; Transcription Factors - genetics</subject><ispartof>PLoS genetics, 2016-04, Vol.12 (4), p.e1005985-e1005985</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Germ Line. PLoS Genet 12(4): e1005985. doi:10.1371/journal.pgen.1005985</rights><rights>2016 Cinquin et al 2016 Cinquin et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Germ Line. PLoS Genet 12(4): e1005985. doi:10.1371/journal.pgen.1005985</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c759t-9921c4c45dd48ec1459880a7dd48be5b8e352a2452d2307fc3bb4c641df5015f3</citedby><cites>FETCH-LOGICAL-c759t-9921c4c45dd48ec1459880a7dd48be5b8e352a2452d2307fc3bb4c641df5015f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831802/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831802/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27077385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cinquin, Amanda</creatorcontrib><creatorcontrib>Chiang, Michael</creatorcontrib><creatorcontrib>Paz, Adrian</creatorcontrib><creatorcontrib>Hallman, Sam</creatorcontrib><creatorcontrib>Yuan, Oliver</creatorcontrib><creatorcontrib>Vysniauskaite, Indre</creatorcontrib><creatorcontrib>Fowlkes, Charless C</creatorcontrib><creatorcontrib>Cinquin, Olivier</creatorcontrib><title>Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Self-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal-for example, because cycling cells exhaust their replicative capacity and become senescent. Here we assay the relationship between stem cell cycling and senescence in the Caenorhabditis elegans reproductive system, defining this senescence as the progressive decline in "reproductive capacity," i.e. in the number of progeny that can be produced until cessation of reproduction. We show that stem cell cycling diminishes remaining reproductive capacity, at least in part through the DNA damage response. Paradoxically, gonads kept under conditions that preclude reproduction keep cycling and producing cells that undergo apoptosis or are laid as unfertilized gametes, thus squandering reproductive capacity. We show that continued activity is in fact beneficial inasmuch as gonads that are active when reproduction is initiated have more sustained early progeny production. Intriguingly, continued cycling is intermittent-gonads switch between active and dormant states-and in all likelihood stochastic. Other organs face tradeoffs whereby stem cell cycling has the beneficial effect of providing freshly-differentiated cells and the detrimental effect of increasing the likelihood of cancer or senescence; stochastic stem cell cycling may allow for a subset of cells to preserve proliferative potential in old age, which may implement a strategy to deal with uncertainty as to the total amount of proliferation to be undergone over an organism's lifespan.</description><subject>Age</subject><subject>Aging</subject><subject>Aging (Biology)</subject><subject>Aging - physiology</subject><subject>Animal reproduction</subject><subject>Animals</subject><subject>Apoptosis - genetics</subject><subject>Biology and Life Sciences</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell Self Renewal - physiology</subject><subject>Cellular Senescence - genetics</subject><subject>Cellular Senescence - physiology</subject><subject>Confidence intervals</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Damage - genetics</subject><subject>DNA Repair - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Grants</subject><subject>Histograms</subject><subject>M Phase Cell Cycle Checkpoints - genetics</subject><subject>Medicine and Health Sciences</subject><subject>Mutation</subject><subject>Observations</subject><subject>Ovary - physiology</subject><subject>Replication Protein A - genetics</subject><subject>Reproduction - physiology</subject><subject>Reproductive system</subject><subject>Research and Analysis Methods</subject><subject>Senescence</subject><subject>Sperm</subject><subject>Starvation - physiopathology</subject><subject>Stem Cells</subject><subject>Transcription Factors - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9Fu0zAUhiMEYmPwBggiISG4aLFju7ZvkEYFo1LFpBW4tRznJM3k2l3sAnt7nDWbGrSLIV_YPv7Of-zfOln2EqMpJhx_uPS7zmk73TbgphghJgV7lB1jxsiEU0QfH6yPsmchXCJEmJD8aXZUcMQ5Eew4UwsXodu0MYKL-SrCJp-Dtfn82tjWNfknbbUzEPIV2HpyAQ5-a5trV6WAg2AgHea-zuMa8vk0BwuNdiE_S5r5snXwPHtSaxvgxTCfZD--fP4-_zpZnp8t5qfLieFMxomUBTbUUFZVVIDBNL1GIM37bQmsFEBYoQvKiqogiNeGlCU1M4qrmiHManKSvd7rbq0PavAmKMyFZKwoCE3EYk9UXl-qbddudHetvG7VTcB3jdJdbI0FhSpRF0JwRjWlRQkCz3gF0uBZqYWsqqT1cai2KzdQJRdip-1IdHzi2rVq_C9FBcECFUng3SDQ-asdhKg2bTLTJrPB7_p7S0qllJg_ABWYEYFkj775B73fiIFqdHpr62qfrmh6UXVKuWSUFDdlp_dQaVSwaY13ULcpPkp4P0pITIQ_sdG7ENRidfEf7LeHs-c_x-zbA3YN2sZ18HYXW-_CGKR70HQ-hA7qu7_DSPXtdeuc6ttLDe2V0l4d_vtd0m0_kb-Tvhxr</recordid><startdate>20160414</startdate><enddate>20160414</enddate><creator>Cinquin, Amanda</creator><creator>Chiang, Michael</creator><creator>Paz, Adrian</creator><creator>Hallman, Sam</creator><creator>Yuan, Oliver</creator><creator>Vysniauskaite, Indre</creator><creator>Fowlkes, Charless C</creator><creator>Cinquin, Olivier</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160414</creationdate><title>Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line</title><author>Cinquin, Amanda ; Chiang, Michael ; Paz, Adrian ; Hallman, Sam ; Yuan, Oliver ; Vysniauskaite, Indre ; Fowlkes, Charless C ; Cinquin, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c759t-9921c4c45dd48ec1459880a7dd48be5b8e352a2452d2307fc3bb4c641df5015f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Age</topic><topic>Aging</topic><topic>Aging (Biology)</topic><topic>Aging - physiology</topic><topic>Animal reproduction</topic><topic>Animals</topic><topic>Apoptosis - genetics</topic><topic>Biology and Life Sciences</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell Self Renewal - physiology</topic><topic>Cellular Senescence - genetics</topic><topic>Cellular Senescence - physiology</topic><topic>Confidence intervals</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Damage - genetics</topic><topic>DNA Repair - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Grants</topic><topic>Histograms</topic><topic>M Phase Cell Cycle Checkpoints - genetics</topic><topic>Medicine and Health Sciences</topic><topic>Mutation</topic><topic>Observations</topic><topic>Ovary - physiology</topic><topic>Replication Protein A - genetics</topic><topic>Reproduction - physiology</topic><topic>Reproductive system</topic><topic>Research and Analysis Methods</topic><topic>Senescence</topic><topic>Sperm</topic><topic>Starvation - physiopathology</topic><topic>Stem Cells</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cinquin, Amanda</creatorcontrib><creatorcontrib>Chiang, Michael</creatorcontrib><creatorcontrib>Paz, Adrian</creatorcontrib><creatorcontrib>Hallman, Sam</creatorcontrib><creatorcontrib>Yuan, Oliver</creatorcontrib><creatorcontrib>Vysniauskaite, Indre</creatorcontrib><creatorcontrib>Fowlkes, Charless C</creatorcontrib><creatorcontrib>Cinquin, Olivier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cinquin, Amanda</au><au>Chiang, Michael</au><au>Paz, Adrian</au><au>Hallman, Sam</au><au>Yuan, Oliver</au><au>Vysniauskaite, Indre</au><au>Fowlkes, Charless C</au><au>Cinquin, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2016-04-14</date><risdate>2016</risdate><volume>12</volume><issue>4</issue><spage>e1005985</spage><epage>e1005985</epage><pages>e1005985-e1005985</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Self-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal-for example, because cycling cells exhaust their replicative capacity and become senescent. Here we assay the relationship between stem cell cycling and senescence in the Caenorhabditis elegans reproductive system, defining this senescence as the progressive decline in "reproductive capacity," i.e. in the number of progeny that can be produced until cessation of reproduction. We show that stem cell cycling diminishes remaining reproductive capacity, at least in part through the DNA damage response. Paradoxically, gonads kept under conditions that preclude reproduction keep cycling and producing cells that undergo apoptosis or are laid as unfertilized gametes, thus squandering reproductive capacity. We show that continued activity is in fact beneficial inasmuch as gonads that are active when reproduction is initiated have more sustained early progeny production. Intriguingly, continued cycling is intermittent-gonads switch between active and dormant states-and in all likelihood stochastic. Other organs face tradeoffs whereby stem cell cycling has the beneficial effect of providing freshly-differentiated cells and the detrimental effect of increasing the likelihood of cancer or senescence; stochastic stem cell cycling may allow for a subset of cells to preserve proliferative potential in old age, which may implement a strategy to deal with uncertainty as to the total amount of proliferation to be undergone over an organism's lifespan.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27077385</pmid><doi>10.1371/journal.pgen.1005985</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2016-04, Vol.12 (4), p.e1005985-e1005985 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1789552234 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Age Aging Aging (Biology) Aging - physiology Animal reproduction Animals Apoptosis - genetics Biology and Life Sciences Caenorhabditis elegans Caenorhabditis elegans - physiology Caenorhabditis elegans Proteins - genetics Cancer Cell cycle Cell Self Renewal - physiology Cellular Senescence - genetics Cellular Senescence - physiology Confidence intervals Deoxyribonucleic acid DNA DNA Damage - genetics DNA Repair - genetics DNA-Binding Proteins - genetics Female Gene expression Genes Genetic aspects Grants Histograms M Phase Cell Cycle Checkpoints - genetics Medicine and Health Sciences Mutation Observations Ovary - physiology Replication Protein A - genetics Reproduction - physiology Reproductive system Research and Analysis Methods Senescence Sperm Starvation - physiopathology Stem Cells Transcription Factors - genetics |
title | Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A11%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intermittent%20Stem%20Cell%20Cycling%20Balances%20Self-Renewal%20and%20Senescence%20of%20the%20C.%20elegans%20Germ%20Line&rft.jtitle=PLoS%20genetics&rft.au=Cinquin,%20Amanda&rft.date=2016-04-14&rft.volume=12&rft.issue=4&rft.spage=e1005985&rft.epage=e1005985&rft.pages=e1005985-e1005985&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1005985&rft_dat=%3Cgale_plos_%3EA479543217%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789552234&rft_id=info:pmid/27077385&rft_galeid=A479543217&rft_doaj_id=oai_doaj_org_article_0d8f288754a442be8167de9c16ba89dd&rfr_iscdi=true |