The Role of Genome Accessibility in Transcription Factor Binding in Bacteria

ChIP-seq enables genome-scale identification of regulatory regions that govern gene expression. However, the biological insights generated from ChIP-seq analysis have been limited to predictions of binding sites and cooperative interactions. Furthermore, ChIP-seq data often poorly correlate with in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2016-04, Vol.12 (4), p.e1004891-e1004891
Hauptverfasser: Gomes, Antonio L C, Wang, Harris H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1004891
container_issue 4
container_start_page e1004891
container_title PLoS computational biology
container_volume 12
creator Gomes, Antonio L C
Wang, Harris H
description ChIP-seq enables genome-scale identification of regulatory regions that govern gene expression. However, the biological insights generated from ChIP-seq analysis have been limited to predictions of binding sites and cooperative interactions. Furthermore, ChIP-seq data often poorly correlate with in vitro measurements or predicted motifs, highlighting that binding affinity alone is insufficient to explain transcription factor (TF)-binding in vivo. One possibility is that binding sites are not equally accessible across the genome. A more comprehensive biophysical representation of TF-binding is required to improve our ability to understand, predict, and alter gene expression. Here, we show that genome accessibility is a key parameter that impacts TF-binding in bacteria. We developed a thermodynamic model that parameterizes ChIP-seq coverage in terms of genome accessibility and binding affinity. The role of genome accessibility is validated using a large-scale ChIP-seq dataset of the M. tuberculosis regulatory network. We find that accounting for genome accessibility led to a model that explains 63% of the ChIP-seq profile variance, while a model based in motif score alone explains only 35% of the variance. Moreover, our framework enables de novo ChIP-seq peak prediction and is useful for inferring TF-binding peaks in new experimental conditions by reducing the need for additional experiments. We observe that the genome is more accessible in intergenic regions, and that increased accessibility is positively correlated with gene expression and anti-correlated with distance to the origin of replication. Our biophysically motivated model provides a more comprehensive description of TF-binding in vivo from first principles towards a better representation of gene regulation in silico, with promising applications in systems biology.
doi_str_mv 10.1371/journal.pcbi.1004891
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1789539335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A479545675</galeid><doaj_id>oai_doaj_org_article_26072d3e0dc848788baebff6fdeb4f1c</doaj_id><sourcerecordid>A479545675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c666t-18dff26771797b11350c9f759f06202236301336aabdac5c10de7e5d5f7616fd3</originalsourceid><addsrcrecordid>eNqVkt-LEzEQxxdRvPP0PxBd8EUfWpPNz30Reod3ForCWZ9DNpn0UrZJTXbF--9Nbe-4iiCSh4SZz3xn8mWq6iVGU0wEfr-OYwq6n25N56cYISpb_Kg6xYyRiSBMPn7wPqme5bxGqDxb_rQ6aQRGlGN2Wi2WN1Bfxx7q6OorCHED9cwYyNl3vvfDbe1DvUw6ZJP8dvAx1JfaDDHV5z5YH1a7_HmJQPL6efXE6T7Di8N9Vn27_Li8-DRZfLmaX8wWE8M5HyZYWucaLgQWregwJgyZ1gnWOsQb1DSEE4QJ4Vp3VhtmMLIggFnmBMfcWXJWvd7rbvuY1cGIrLCQLSMtIawQ8z1ho16rbfIbnW5V1F79DsS0UjoN3vSgGo5EYwkgaySVQspOQ-dc6QMdddgUrQ-HbmO3AWsgDEn3R6LHmeBv1Cr-UFRSzAQtAm8PAil-HyEPauOzgb7XAeJY5paUU8zL9P9GhaS02ENkQd_8gf7diOmeWunyVx9cLCOacixsvIkBnC_xGRUto4yLXcG7o4LCDPBzWOkxZzX_ev0f7Odjlu5Zk2LOCdy9gRip3ULfja92C60OC13KXj00_77oboPJLyXB8Ik</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789539335</pqid></control><display><type>article</type><title>The Role of Genome Accessibility in Transcription Factor Binding in Bacteria</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Gomes, Antonio L C ; Wang, Harris H</creator><contributor>Przytycka, Teresa M.</contributor><creatorcontrib>Gomes, Antonio L C ; Wang, Harris H ; Przytycka, Teresa M.</creatorcontrib><description>ChIP-seq enables genome-scale identification of regulatory regions that govern gene expression. However, the biological insights generated from ChIP-seq analysis have been limited to predictions of binding sites and cooperative interactions. Furthermore, ChIP-seq data often poorly correlate with in vitro measurements or predicted motifs, highlighting that binding affinity alone is insufficient to explain transcription factor (TF)-binding in vivo. One possibility is that binding sites are not equally accessible across the genome. A more comprehensive biophysical representation of TF-binding is required to improve our ability to understand, predict, and alter gene expression. Here, we show that genome accessibility is a key parameter that impacts TF-binding in bacteria. We developed a thermodynamic model that parameterizes ChIP-seq coverage in terms of genome accessibility and binding affinity. The role of genome accessibility is validated using a large-scale ChIP-seq dataset of the M. tuberculosis regulatory network. We find that accounting for genome accessibility led to a model that explains 63% of the ChIP-seq profile variance, while a model based in motif score alone explains only 35% of the variance. Moreover, our framework enables de novo ChIP-seq peak prediction and is useful for inferring TF-binding peaks in new experimental conditions by reducing the need for additional experiments. We observe that the genome is more accessible in intergenic regions, and that increased accessibility is positively correlated with gene expression and anti-correlated with distance to the origin of replication. Our biophysically motivated model provides a more comprehensive description of TF-binding in vivo from first principles towards a better representation of gene regulation in silico, with promising applications in systems biology.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1004891</identifier><identifier>PMID: 27104615</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bacteria ; Bacteria - genetics ; Bacteria - metabolism ; Binding sites ; Binding sites (Biochemistry) ; Biology and Life Sciences ; Biophysical Phenomena ; Chromatin Immunoprecipitation ; Computational Biology ; Deoxyribonucleic acid ; DNA ; Engineering and Technology ; Experiments ; Funding ; Gene expression ; Gene Regulatory Networks ; Genetic aspects ; Genome, Bacterial ; Genomes ; Linear Models ; Methods ; Microbial colonies ; Models, Biological ; Mycobacterium ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - metabolism ; Physical Sciences ; Physiological aspects ; Protein Binding ; Research and Analysis Methods ; Sequence Analysis, DNA ; Systems Biology ; Thermodynamics ; Transcription factors ; Transcription Factors - metabolism ; Tuberculosis</subject><ispartof>PLoS computational biology, 2016-04, Vol.12 (4), p.e1004891-e1004891</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Gomes ALC, Wang HH (2016) The Role of Genome Accessibility in Transcription Factor Binding in Bacteria. PLoS Comput Biol 12(4): e1004891. doi:10.1371/journal.pcbi.1004891</rights><rights>2016 Gomes, Wang 2016 Gomes, Wang</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Gomes ALC, Wang HH (2016) The Role of Genome Accessibility in Transcription Factor Binding in Bacteria. PLoS Comput Biol 12(4): e1004891. doi:10.1371/journal.pcbi.1004891</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c666t-18dff26771797b11350c9f759f06202236301336aabdac5c10de7e5d5f7616fd3</citedby><cites>FETCH-LOGICAL-c666t-18dff26771797b11350c9f759f06202236301336aabdac5c10de7e5d5f7616fd3</cites><orcidid>0000-0003-3790-3724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841574/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841574/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27104615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Przytycka, Teresa M.</contributor><creatorcontrib>Gomes, Antonio L C</creatorcontrib><creatorcontrib>Wang, Harris H</creatorcontrib><title>The Role of Genome Accessibility in Transcription Factor Binding in Bacteria</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>ChIP-seq enables genome-scale identification of regulatory regions that govern gene expression. However, the biological insights generated from ChIP-seq analysis have been limited to predictions of binding sites and cooperative interactions. Furthermore, ChIP-seq data often poorly correlate with in vitro measurements or predicted motifs, highlighting that binding affinity alone is insufficient to explain transcription factor (TF)-binding in vivo. One possibility is that binding sites are not equally accessible across the genome. A more comprehensive biophysical representation of TF-binding is required to improve our ability to understand, predict, and alter gene expression. Here, we show that genome accessibility is a key parameter that impacts TF-binding in bacteria. We developed a thermodynamic model that parameterizes ChIP-seq coverage in terms of genome accessibility and binding affinity. The role of genome accessibility is validated using a large-scale ChIP-seq dataset of the M. tuberculosis regulatory network. We find that accounting for genome accessibility led to a model that explains 63% of the ChIP-seq profile variance, while a model based in motif score alone explains only 35% of the variance. Moreover, our framework enables de novo ChIP-seq peak prediction and is useful for inferring TF-binding peaks in new experimental conditions by reducing the need for additional experiments. We observe that the genome is more accessible in intergenic regions, and that increased accessibility is positively correlated with gene expression and anti-correlated with distance to the origin of replication. Our biophysically motivated model provides a more comprehensive description of TF-binding in vivo from first principles towards a better representation of gene regulation in silico, with promising applications in systems biology.</description><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Binding sites</subject><subject>Binding sites (Biochemistry)</subject><subject>Biology and Life Sciences</subject><subject>Biophysical Phenomena</subject><subject>Chromatin Immunoprecipitation</subject><subject>Computational Biology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Engineering and Technology</subject><subject>Experiments</subject><subject>Funding</subject><subject>Gene expression</subject><subject>Gene Regulatory Networks</subject><subject>Genetic aspects</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Linear Models</subject><subject>Methods</subject><subject>Microbial colonies</subject><subject>Models, Biological</subject><subject>Mycobacterium</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Research and Analysis Methods</subject><subject>Sequence Analysis, DNA</subject><subject>Systems Biology</subject><subject>Thermodynamics</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>Tuberculosis</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkt-LEzEQxxdRvPP0PxBd8EUfWpPNz30Reod3ForCWZ9DNpn0UrZJTXbF--9Nbe-4iiCSh4SZz3xn8mWq6iVGU0wEfr-OYwq6n25N56cYISpb_Kg6xYyRiSBMPn7wPqme5bxGqDxb_rQ6aQRGlGN2Wi2WN1Bfxx7q6OorCHED9cwYyNl3vvfDbe1DvUw6ZJP8dvAx1JfaDDHV5z5YH1a7_HmJQPL6efXE6T7Di8N9Vn27_Li8-DRZfLmaX8wWE8M5HyZYWucaLgQWregwJgyZ1gnWOsQb1DSEE4QJ4Vp3VhtmMLIggFnmBMfcWXJWvd7rbvuY1cGIrLCQLSMtIawQ8z1ho16rbfIbnW5V1F79DsS0UjoN3vSgGo5EYwkgaySVQspOQ-dc6QMdddgUrQ-HbmO3AWsgDEn3R6LHmeBv1Cr-UFRSzAQtAm8PAil-HyEPauOzgb7XAeJY5paUU8zL9P9GhaS02ENkQd_8gf7diOmeWunyVx9cLCOacixsvIkBnC_xGRUto4yLXcG7o4LCDPBzWOkxZzX_ev0f7Odjlu5Zk2LOCdy9gRip3ULfja92C60OC13KXj00_77oboPJLyXB8Ik</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Gomes, Antonio L C</creator><creator>Wang, Harris H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3790-3724</orcidid></search><sort><creationdate>20160401</creationdate><title>The Role of Genome Accessibility in Transcription Factor Binding in Bacteria</title><author>Gomes, Antonio L C ; Wang, Harris H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c666t-18dff26771797b11350c9f759f06202236301336aabdac5c10de7e5d5f7616fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Binding sites</topic><topic>Binding sites (Biochemistry)</topic><topic>Biology and Life Sciences</topic><topic>Biophysical Phenomena</topic><topic>Chromatin Immunoprecipitation</topic><topic>Computational Biology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Engineering and Technology</topic><topic>Experiments</topic><topic>Funding</topic><topic>Gene expression</topic><topic>Gene Regulatory Networks</topic><topic>Genetic aspects</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Linear Models</topic><topic>Methods</topic><topic>Microbial colonies</topic><topic>Models, Biological</topic><topic>Mycobacterium</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Research and Analysis Methods</topic><topic>Sequence Analysis, DNA</topic><topic>Systems Biology</topic><topic>Thermodynamics</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomes, Antonio L C</creatorcontrib><creatorcontrib>Wang, Harris H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomes, Antonio L C</au><au>Wang, Harris H</au><au>Przytycka, Teresa M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Genome Accessibility in Transcription Factor Binding in Bacteria</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>12</volume><issue>4</issue><spage>e1004891</spage><epage>e1004891</epage><pages>e1004891-e1004891</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>ChIP-seq enables genome-scale identification of regulatory regions that govern gene expression. However, the biological insights generated from ChIP-seq analysis have been limited to predictions of binding sites and cooperative interactions. Furthermore, ChIP-seq data often poorly correlate with in vitro measurements or predicted motifs, highlighting that binding affinity alone is insufficient to explain transcription factor (TF)-binding in vivo. One possibility is that binding sites are not equally accessible across the genome. A more comprehensive biophysical representation of TF-binding is required to improve our ability to understand, predict, and alter gene expression. Here, we show that genome accessibility is a key parameter that impacts TF-binding in bacteria. We developed a thermodynamic model that parameterizes ChIP-seq coverage in terms of genome accessibility and binding affinity. The role of genome accessibility is validated using a large-scale ChIP-seq dataset of the M. tuberculosis regulatory network. We find that accounting for genome accessibility led to a model that explains 63% of the ChIP-seq profile variance, while a model based in motif score alone explains only 35% of the variance. Moreover, our framework enables de novo ChIP-seq peak prediction and is useful for inferring TF-binding peaks in new experimental conditions by reducing the need for additional experiments. We observe that the genome is more accessible in intergenic regions, and that increased accessibility is positively correlated with gene expression and anti-correlated with distance to the origin of replication. Our biophysically motivated model provides a more comprehensive description of TF-binding in vivo from first principles towards a better representation of gene regulation in silico, with promising applications in systems biology.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27104615</pmid><doi>10.1371/journal.pcbi.1004891</doi><orcidid>https://orcid.org/0000-0003-3790-3724</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2016-04, Vol.12 (4), p.e1004891-e1004891
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1789539335
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Bacteria
Bacteria - genetics
Bacteria - metabolism
Binding sites
Binding sites (Biochemistry)
Biology and Life Sciences
Biophysical Phenomena
Chromatin Immunoprecipitation
Computational Biology
Deoxyribonucleic acid
DNA
Engineering and Technology
Experiments
Funding
Gene expression
Gene Regulatory Networks
Genetic aspects
Genome, Bacterial
Genomes
Linear Models
Methods
Microbial colonies
Models, Biological
Mycobacterium
Mycobacterium tuberculosis - genetics
Mycobacterium tuberculosis - metabolism
Physical Sciences
Physiological aspects
Protein Binding
Research and Analysis Methods
Sequence Analysis, DNA
Systems Biology
Thermodynamics
Transcription factors
Transcription Factors - metabolism
Tuberculosis
title The Role of Genome Accessibility in Transcription Factor Binding in Bacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Genome%20Accessibility%20in%20Transcription%20Factor%20Binding%20in%20Bacteria&rft.jtitle=PLoS%20computational%20biology&rft.au=Gomes,%20Antonio%20L%20C&rft.date=2016-04-01&rft.volume=12&rft.issue=4&rft.spage=e1004891&rft.epage=e1004891&rft.pages=e1004891-e1004891&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1004891&rft_dat=%3Cgale_plos_%3EA479545675%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789539335&rft_id=info:pmid/27104615&rft_galeid=A479545675&rft_doaj_id=oai_doaj_org_article_26072d3e0dc848788baebff6fdeb4f1c&rfr_iscdi=true