Enhancement of Chemotactic Cell Aggregation by Haptotactic Cell-To-Cell Interaction

The crawling of biological cell is a complex phenomenon involving various biochemical and mechanical processes. Some of these processes are intrinsic to individual cells, while others pertain to cell-to-cell interactions and to their responses to extrinsically imposed cues. Here, we report an intere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-04, Vol.11 (4), p.e0154717-e0154717
Hauptverfasser: Kwon, Tae-Goo, Yang, Taeseok Daniel, Lee, Kyoung J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0154717
container_issue 4
container_start_page e0154717
container_title PloS one
container_volume 11
creator Kwon, Tae-Goo
Yang, Taeseok Daniel
Lee, Kyoung J
description The crawling of biological cell is a complex phenomenon involving various biochemical and mechanical processes. Some of these processes are intrinsic to individual cells, while others pertain to cell-to-cell interactions and to their responses to extrinsically imposed cues. Here, we report an interesting aggregation dynamics of mathematical model cells, when they perform chemotaxis in response to an externally imposed global chemical gradient while they influence each other through a haptotaxis-mediated social interaction, which confers intriguing trail patterns. In the absence of the cell-to-cell interaction, the equilibrium population density profile fits well to that of a simple Keller-Segal population dynamic model, in which a chemotactic current density [Formula: see text] competes with a normal diffusive current density [Formula: see text], where p and ρ refer to the concentration of chemoattractant and population density, respectively. We find that the cell-to-cell interaction confers a far more compact aggregation resulting in a much higher peak equilibrium cell density. The mathematical model system is applicable to many biological systems such as swarming microglia and neutrophils or accumulating ants towards a localized food source.
doi_str_mv 10.1371/journal.pone.0154717
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1785489684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A453417966</galeid><doaj_id>oai_doaj_org_article_8f243b50e0d84214a559688f1c18fb78</doaj_id><sourcerecordid>A453417966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-9dc8dff191059ac1395c5de997b118df4af70e821dad9b7a2a2ff422b13923853</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7jr6D0QLguhFx558NOmNMAyrO7Cw4K7ehjRNOh3aZjZpxf33pjPdZSp7YXqRcM5z3vScvFH0FtIlYAZfdnZwnWyWe9vpZQqUMGDPonPIMUoylOLnJ-ez6JX3uzSlmGfZy-gMMUAcQ3oe3Vx0W9kp3equj62J11vd2l6qvlbxWjdNvKoqpyvZ17aLi_v4Uu7703xya5MDt-l67ca47V5HL4xsvH4z7Yvo57eL2_VlcnX9fbNeXSUqy1Gf5KXipTGQQ0pzqQDnVNFS5zkrAEKGSMNSzRGUsswLJpFExhCEikAizCleRO-PuvvGejHNwwtgnBKeZ5wEYnMkSit3Yu_qVrp7YWUtDgHrKiFdaKXRghtEcEFTnZacICCS0iDBDSjgpmA8aH2dbhuKVpcqDMzJZiY6z3T1VlT2tyCcAg5rEX2aBJy9G7TvRVt7FWYnO22Hw39nFBgNr7aIPvyDPt3dRFUyNFB3xoZ71SgqVoRiAizPskAtn6DCV-q2VsE8pg7xWcHnWUFgev2nr-Tgvdjc_Ph_9vrXnP14wm61bPqtt80wWsbPQXIElbPeO20ehwypGL3_MA0xel9M3g9l704f6LHowez4L-qX_U8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785489684</pqid></control><display><type>article</type><title>Enhancement of Chemotactic Cell Aggregation by Haptotactic Cell-To-Cell Interaction</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kwon, Tae-Goo ; Yang, Taeseok Daniel ; Lee, Kyoung J</creator><contributor>Chiam, Keng-Hwee</contributor><creatorcontrib>Kwon, Tae-Goo ; Yang, Taeseok Daniel ; Lee, Kyoung J ; Chiam, Keng-Hwee</creatorcontrib><description>The crawling of biological cell is a complex phenomenon involving various biochemical and mechanical processes. Some of these processes are intrinsic to individual cells, while others pertain to cell-to-cell interactions and to their responses to extrinsically imposed cues. Here, we report an interesting aggregation dynamics of mathematical model cells, when they perform chemotaxis in response to an externally imposed global chemical gradient while they influence each other through a haptotaxis-mediated social interaction, which confers intriguing trail patterns. In the absence of the cell-to-cell interaction, the equilibrium population density profile fits well to that of a simple Keller-Segal population dynamic model, in which a chemotactic current density [Formula: see text] competes with a normal diffusive current density [Formula: see text], where p and ρ refer to the concentration of chemoattractant and population density, respectively. We find that the cell-to-cell interaction confers a far more compact aggregation resulting in a much higher peak equilibrium cell density. The mathematical model system is applicable to many biological systems such as swarming microglia and neutrophils or accumulating ants towards a localized food source.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0154717</identifier><identifier>PMID: 27128310</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine ; Agglomeration ; Animals ; Biology and Life Sciences ; Cancer ; Cell adhesion &amp; migration ; Cell aggregation ; Cell Aggregation - physiology ; Cell Communication - physiology ; Cell density ; Cell interactions ; Cell Movement - physiology ; Chemotactic Factors - physiology ; Chemotaxis ; Chemotaxis - physiology ; Cues ; Current density ; Dynamic models ; Equilibrium ; Food sources ; Leukocytes (neutrophilic) ; Mathematical analysis ; Mathematical models ; Medicine and Health Sciences ; Microglia ; Microglia - physiology ; Models, Biological ; Models, Neurological ; Neutrophils ; Physics ; Population density ; Rats ; Research and Analysis Methods ; Swarming</subject><ispartof>PloS one, 2016-04, Vol.11 (4), p.e0154717-e0154717</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Kwon et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Kwon et al 2016 Kwon et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-9dc8dff191059ac1395c5de997b118df4af70e821dad9b7a2a2ff422b13923853</citedby><cites>FETCH-LOGICAL-c692t-9dc8dff191059ac1395c5de997b118df4af70e821dad9b7a2a2ff422b13923853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851333/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851333/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27128310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chiam, Keng-Hwee</contributor><creatorcontrib>Kwon, Tae-Goo</creatorcontrib><creatorcontrib>Yang, Taeseok Daniel</creatorcontrib><creatorcontrib>Lee, Kyoung J</creatorcontrib><title>Enhancement of Chemotactic Cell Aggregation by Haptotactic Cell-To-Cell Interaction</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The crawling of biological cell is a complex phenomenon involving various biochemical and mechanical processes. Some of these processes are intrinsic to individual cells, while others pertain to cell-to-cell interactions and to their responses to extrinsically imposed cues. Here, we report an interesting aggregation dynamics of mathematical model cells, when they perform chemotaxis in response to an externally imposed global chemical gradient while they influence each other through a haptotaxis-mediated social interaction, which confers intriguing trail patterns. In the absence of the cell-to-cell interaction, the equilibrium population density profile fits well to that of a simple Keller-Segal population dynamic model, in which a chemotactic current density [Formula: see text] competes with a normal diffusive current density [Formula: see text], where p and ρ refer to the concentration of chemoattractant and population density, respectively. We find that the cell-to-cell interaction confers a far more compact aggregation resulting in a much higher peak equilibrium cell density. The mathematical model system is applicable to many biological systems such as swarming microglia and neutrophils or accumulating ants towards a localized food source.</description><subject>Adenosine</subject><subject>Agglomeration</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell aggregation</subject><subject>Cell Aggregation - physiology</subject><subject>Cell Communication - physiology</subject><subject>Cell density</subject><subject>Cell interactions</subject><subject>Cell Movement - physiology</subject><subject>Chemotactic Factors - physiology</subject><subject>Chemotaxis</subject><subject>Chemotaxis - physiology</subject><subject>Cues</subject><subject>Current density</subject><subject>Dynamic models</subject><subject>Equilibrium</subject><subject>Food sources</subject><subject>Leukocytes (neutrophilic)</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Microglia</subject><subject>Microglia - physiology</subject><subject>Models, Biological</subject><subject>Models, Neurological</subject><subject>Neutrophils</subject><subject>Physics</subject><subject>Population density</subject><subject>Rats</subject><subject>Research and Analysis Methods</subject><subject>Swarming</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7jr6D0QLguhFx558NOmNMAyrO7Cw4K7ehjRNOh3aZjZpxf33pjPdZSp7YXqRcM5z3vScvFH0FtIlYAZfdnZwnWyWe9vpZQqUMGDPonPIMUoylOLnJ-ez6JX3uzSlmGfZy-gMMUAcQ3oe3Vx0W9kp3equj62J11vd2l6qvlbxWjdNvKoqpyvZ17aLi_v4Uu7703xya5MDt-l67ca47V5HL4xsvH4z7Yvo57eL2_VlcnX9fbNeXSUqy1Gf5KXipTGQQ0pzqQDnVNFS5zkrAEKGSMNSzRGUsswLJpFExhCEikAizCleRO-PuvvGejHNwwtgnBKeZ5wEYnMkSit3Yu_qVrp7YWUtDgHrKiFdaKXRghtEcEFTnZacICCS0iDBDSjgpmA8aH2dbhuKVpcqDMzJZiY6z3T1VlT2tyCcAg5rEX2aBJy9G7TvRVt7FWYnO22Hw39nFBgNr7aIPvyDPt3dRFUyNFB3xoZ71SgqVoRiAizPskAtn6DCV-q2VsE8pg7xWcHnWUFgev2nr-Tgvdjc_Ph_9vrXnP14wm61bPqtt80wWsbPQXIElbPeO20ehwypGL3_MA0xel9M3g9l704f6LHowez4L-qX_U8</recordid><startdate>20160429</startdate><enddate>20160429</enddate><creator>Kwon, Tae-Goo</creator><creator>Yang, Taeseok Daniel</creator><creator>Lee, Kyoung J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160429</creationdate><title>Enhancement of Chemotactic Cell Aggregation by Haptotactic Cell-To-Cell Interaction</title><author>Kwon, Tae-Goo ; Yang, Taeseok Daniel ; Lee, Kyoung J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-9dc8dff191059ac1395c5de997b118df4af70e821dad9b7a2a2ff422b13923853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine</topic><topic>Agglomeration</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell aggregation</topic><topic>Cell Aggregation - physiology</topic><topic>Cell Communication - physiology</topic><topic>Cell density</topic><topic>Cell interactions</topic><topic>Cell Movement - physiology</topic><topic>Chemotactic Factors - physiology</topic><topic>Chemotaxis</topic><topic>Chemotaxis - physiology</topic><topic>Cues</topic><topic>Current density</topic><topic>Dynamic models</topic><topic>Equilibrium</topic><topic>Food sources</topic><topic>Leukocytes (neutrophilic)</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Microglia</topic><topic>Microglia - physiology</topic><topic>Models, Biological</topic><topic>Models, Neurological</topic><topic>Neutrophils</topic><topic>Physics</topic><topic>Population density</topic><topic>Rats</topic><topic>Research and Analysis Methods</topic><topic>Swarming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Tae-Goo</creatorcontrib><creatorcontrib>Yang, Taeseok Daniel</creatorcontrib><creatorcontrib>Lee, Kyoung J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Tae-Goo</au><au>Yang, Taeseok Daniel</au><au>Lee, Kyoung J</au><au>Chiam, Keng-Hwee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of Chemotactic Cell Aggregation by Haptotactic Cell-To-Cell Interaction</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-04-29</date><risdate>2016</risdate><volume>11</volume><issue>4</issue><spage>e0154717</spage><epage>e0154717</epage><pages>e0154717-e0154717</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The crawling of biological cell is a complex phenomenon involving various biochemical and mechanical processes. Some of these processes are intrinsic to individual cells, while others pertain to cell-to-cell interactions and to their responses to extrinsically imposed cues. Here, we report an interesting aggregation dynamics of mathematical model cells, when they perform chemotaxis in response to an externally imposed global chemical gradient while they influence each other through a haptotaxis-mediated social interaction, which confers intriguing trail patterns. In the absence of the cell-to-cell interaction, the equilibrium population density profile fits well to that of a simple Keller-Segal population dynamic model, in which a chemotactic current density [Formula: see text] competes with a normal diffusive current density [Formula: see text], where p and ρ refer to the concentration of chemoattractant and population density, respectively. We find that the cell-to-cell interaction confers a far more compact aggregation resulting in a much higher peak equilibrium cell density. The mathematical model system is applicable to many biological systems such as swarming microglia and neutrophils or accumulating ants towards a localized food source.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27128310</pmid><doi>10.1371/journal.pone.0154717</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-04, Vol.11 (4), p.e0154717-e0154717
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1785489684
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adenosine
Agglomeration
Animals
Biology and Life Sciences
Cancer
Cell adhesion & migration
Cell aggregation
Cell Aggregation - physiology
Cell Communication - physiology
Cell density
Cell interactions
Cell Movement - physiology
Chemotactic Factors - physiology
Chemotaxis
Chemotaxis - physiology
Cues
Current density
Dynamic models
Equilibrium
Food sources
Leukocytes (neutrophilic)
Mathematical analysis
Mathematical models
Medicine and Health Sciences
Microglia
Microglia - physiology
Models, Biological
Models, Neurological
Neutrophils
Physics
Population density
Rats
Research and Analysis Methods
Swarming
title Enhancement of Chemotactic Cell Aggregation by Haptotactic Cell-To-Cell Interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20Chemotactic%20Cell%20Aggregation%20by%20Haptotactic%20Cell-To-Cell%20Interaction&rft.jtitle=PloS%20one&rft.au=Kwon,%20Tae-Goo&rft.date=2016-04-29&rft.volume=11&rft.issue=4&rft.spage=e0154717&rft.epage=e0154717&rft.pages=e0154717-e0154717&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0154717&rft_dat=%3Cgale_plos_%3EA453417966%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1785489684&rft_id=info:pmid/27128310&rft_galeid=A453417966&rft_doaj_id=oai_doaj_org_article_8f243b50e0d84214a559688f1c18fb78&rfr_iscdi=true