Inferring Intra-Community Microbial Interaction Patterns from Metagenomic Datasets Using Associative Rule Mining Techniques

The nature of inter-microbial metabolic interactions defines the stability of microbial communities residing in any ecological niche. Deciphering these interaction patterns is crucial for understanding the mode/mechanism(s) through which an individual microbial community transitions from one state t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-04, Vol.11 (4), p.e0154493-e0154493
Hauptverfasser: Tandon, Disha, Haque, Mohammed Monzoorul, Mande, Sharmila S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0154493
container_issue 4
container_start_page e0154493
container_title PloS one
container_volume 11
creator Tandon, Disha
Haque, Mohammed Monzoorul
Mande, Sharmila S
description The nature of inter-microbial metabolic interactions defines the stability of microbial communities residing in any ecological niche. Deciphering these interaction patterns is crucial for understanding the mode/mechanism(s) through which an individual microbial community transitions from one state to another (e.g. from a healthy to a diseased state). Statistical correlation techniques have been traditionally employed for mining microbial interaction patterns from taxonomic abundance data corresponding to a given microbial community. In spite of their efficiency, these correlation techniques can capture only 'pair-wise interactions'. Moreover, their emphasis on statistical significance can potentially result in missing out on several interactions that are relevant from a biological standpoint. This study explores the applicability of one of the earliest association rule mining algorithm i.e. the 'Apriori algorithm' for deriving 'microbial association rules' from the taxonomic profile of given microbial community. The classical Apriori approach derives association rules by analysing patterns of co-occurrence/co-exclusion between various '(subsets of) features/items' across various samples. Using real-world microbiome data, the efficiency/utility of this rule mining approach in deciphering multiple (biologically meaningful) association patterns between 'subsets/subgroups' of microbes (constituting microbiome samples) is demonstrated. As an example, association rules derived from publicly available gut microbiome datasets indicate an association between a group of microbes (Faecalibacterium, Dorea, and Blautia) that are known to have mutualistic metabolic associations among themselves. Application of the rule mining approach on gut microbiomes (sourced from the Human Microbiome Project) further indicated similar microbial association patterns in gut microbiomes irrespective of the gender of the subjects. A Linux implementation of the Association Rule Mining (ARM) software (customised for deriving 'microbial association rules' from microbiome data) is freely available for download from the following link: http://metagenomics.atc.tcs.com/arm.
doi_str_mv 10.1371/journal.pone.0154493
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1785219945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A453418266</galeid><doaj_id>oai_doaj_org_article_ed678135917c4e84bfcb455fa20c462f</doaj_id><sourcerecordid>A453418266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-99515e5296c18fab93b097f337c4a12f07ad1d81b9092fcddd4a12c1e6b55f643</originalsourceid><addsrcrecordid>eNqNk21v0zAQxyMEYmPwDRBEQkLwoiV-iuM3SFV5qrRpaGy8tRzHbl0ldrGdiYkvj0OzqUGTQHmR5O53_zuf77LsOSjmAFHwbut6b0U73zmr5gUgGDP0IDsGDMFZCQv08OD7KHsSwrYoCKrK8nF2BCmAGDF2nP1aWa28N3adr2z0YrZ0XddbE2_yMyO9q41oB4_yQkbjbP5VxPRjQ6696_IzFcVaWdcZmX8QUQQVQ34VBrlFCE4aEc21yi_6ViU9O9gvldxY86NX4Wn2SIs2qGfj-yS7-vTxcvlldnr-ebVcnM4khSTOGCOAKAJZKUGlRc1QXTCqEaISCwB1QUUDmgrUrGBQy6ZpBrMEqqwJ0SVGJ9nLve6udYGPfQsc0IpAwBgmiVjticaJLd950wl_w50w_I_B-TUXPhrZKq6aklYAEQZSelXhWssapzwCFhKXUCet92O2vu5UI9XQ1nYiOvVYs-Frd81xhRmlQzFvRgHvhjZF3pkgVdsKq1yf6q4KkkiS7vWfaDoiJUVFaUJf_YXe34iRWot0VmO1SyXKQZQvkhuDCpZloub3UOlpVBqENI_aJPsk4O0kIDFR_Yxr0YfAV98u_p89_z5lXx-wGyXauAmu7YdJDVMQ78E00iF4pe_uAxR8WKfbbvBhnfi4TinsxeFd3gXd7g_6DeK4G4E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785219945</pqid></control><display><type>article</type><title>Inferring Intra-Community Microbial Interaction Patterns from Metagenomic Datasets Using Associative Rule Mining Techniques</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tandon, Disha ; Haque, Mohammed Monzoorul ; Mande, Sharmila S</creator><contributor>Ahmed, Niyaz</contributor><creatorcontrib>Tandon, Disha ; Haque, Mohammed Monzoorul ; Mande, Sharmila S ; Ahmed, Niyaz</creatorcontrib><description>The nature of inter-microbial metabolic interactions defines the stability of microbial communities residing in any ecological niche. Deciphering these interaction patterns is crucial for understanding the mode/mechanism(s) through which an individual microbial community transitions from one state to another (e.g. from a healthy to a diseased state). Statistical correlation techniques have been traditionally employed for mining microbial interaction patterns from taxonomic abundance data corresponding to a given microbial community. In spite of their efficiency, these correlation techniques can capture only 'pair-wise interactions'. Moreover, their emphasis on statistical significance can potentially result in missing out on several interactions that are relevant from a biological standpoint. This study explores the applicability of one of the earliest association rule mining algorithm i.e. the 'Apriori algorithm' for deriving 'microbial association rules' from the taxonomic profile of given microbial community. The classical Apriori approach derives association rules by analysing patterns of co-occurrence/co-exclusion between various '(subsets of) features/items' across various samples. Using real-world microbiome data, the efficiency/utility of this rule mining approach in deciphering multiple (biologically meaningful) association patterns between 'subsets/subgroups' of microbes (constituting microbiome samples) is demonstrated. As an example, association rules derived from publicly available gut microbiome datasets indicate an association between a group of microbes (Faecalibacterium, Dorea, and Blautia) that are known to have mutualistic metabolic associations among themselves. Application of the rule mining approach on gut microbiomes (sourced from the Human Microbiome Project) further indicated similar microbial association patterns in gut microbiomes irrespective of the gender of the subjects. A Linux implementation of the Association Rule Mining (ARM) software (customised for deriving 'microbial association rules' from microbiome data) is freely available for download from the following link: http://metagenomics.atc.tcs.com/arm.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0154493</identifier><identifier>PMID: 27124399</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Bioinformatics ; Biology and Life Sciences ; Classification ; Communities ; Computer and Information Sciences ; Correlation ; Data mining ; Data Mining - methods ; Data processing ; Databases, Genetic ; Datasets ; Downloading ; Ecological niches ; Ecology and Environmental Sciences ; Efficiency ; Gastrointestinal Microbiome ; Genomics ; Humans ; Intestinal microflora ; Metabolism ; Metagenome ; Methods ; Microbial activity ; Microbial colonies ; Microbial Interactions ; Microbiomes ; Microorganisms ; Mining ; Pattern recognition (Computers) ; Phylogenetics ; Physical Sciences ; R&amp;D ; Research &amp; development ; Research and Analysis Methods ; Samples ; Statistical analysis ; Statistical correlation ; Statistical methods ; Studies ; Subgroups ; Taxonomy ; Web Browser</subject><ispartof>PloS one, 2016-04, Vol.11 (4), p.e0154493-e0154493</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Tandon et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Tandon et al 2016 Tandon et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-99515e5296c18fab93b097f337c4a12f07ad1d81b9092fcddd4a12c1e6b55f643</citedby><cites>FETCH-LOGICAL-c725t-99515e5296c18fab93b097f337c4a12f07ad1d81b9092fcddd4a12c1e6b55f643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4849775/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4849775/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23855,27913,27914,53780,53782,79359,79360</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27124399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ahmed, Niyaz</contributor><creatorcontrib>Tandon, Disha</creatorcontrib><creatorcontrib>Haque, Mohammed Monzoorul</creatorcontrib><creatorcontrib>Mande, Sharmila S</creatorcontrib><title>Inferring Intra-Community Microbial Interaction Patterns from Metagenomic Datasets Using Associative Rule Mining Techniques</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The nature of inter-microbial metabolic interactions defines the stability of microbial communities residing in any ecological niche. Deciphering these interaction patterns is crucial for understanding the mode/mechanism(s) through which an individual microbial community transitions from one state to another (e.g. from a healthy to a diseased state). Statistical correlation techniques have been traditionally employed for mining microbial interaction patterns from taxonomic abundance data corresponding to a given microbial community. In spite of their efficiency, these correlation techniques can capture only 'pair-wise interactions'. Moreover, their emphasis on statistical significance can potentially result in missing out on several interactions that are relevant from a biological standpoint. This study explores the applicability of one of the earliest association rule mining algorithm i.e. the 'Apriori algorithm' for deriving 'microbial association rules' from the taxonomic profile of given microbial community. The classical Apriori approach derives association rules by analysing patterns of co-occurrence/co-exclusion between various '(subsets of) features/items' across various samples. Using real-world microbiome data, the efficiency/utility of this rule mining approach in deciphering multiple (biologically meaningful) association patterns between 'subsets/subgroups' of microbes (constituting microbiome samples) is demonstrated. As an example, association rules derived from publicly available gut microbiome datasets indicate an association between a group of microbes (Faecalibacterium, Dorea, and Blautia) that are known to have mutualistic metabolic associations among themselves. Application of the rule mining approach on gut microbiomes (sourced from the Human Microbiome Project) further indicated similar microbial association patterns in gut microbiomes irrespective of the gender of the subjects. A Linux implementation of the Association Rule Mining (ARM) software (customised for deriving 'microbial association rules' from microbiome data) is freely available for download from the following link: http://metagenomics.atc.tcs.com/arm.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Classification</subject><subject>Communities</subject><subject>Computer and Information Sciences</subject><subject>Correlation</subject><subject>Data mining</subject><subject>Data Mining - methods</subject><subject>Data processing</subject><subject>Databases, Genetic</subject><subject>Datasets</subject><subject>Downloading</subject><subject>Ecological niches</subject><subject>Ecology and Environmental Sciences</subject><subject>Efficiency</subject><subject>Gastrointestinal Microbiome</subject><subject>Genomics</subject><subject>Humans</subject><subject>Intestinal microflora</subject><subject>Metabolism</subject><subject>Metagenome</subject><subject>Methods</subject><subject>Microbial activity</subject><subject>Microbial colonies</subject><subject>Microbial Interactions</subject><subject>Microbiomes</subject><subject>Microorganisms</subject><subject>Mining</subject><subject>Pattern recognition (Computers)</subject><subject>Phylogenetics</subject><subject>Physical Sciences</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Research and Analysis Methods</subject><subject>Samples</subject><subject>Statistical analysis</subject><subject>Statistical correlation</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Subgroups</subject><subject>Taxonomy</subject><subject>Web Browser</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk21v0zAQxyMEYmPwDRBEQkLwoiV-iuM3SFV5qrRpaGy8tRzHbl0ldrGdiYkvj0OzqUGTQHmR5O53_zuf77LsOSjmAFHwbut6b0U73zmr5gUgGDP0IDsGDMFZCQv08OD7KHsSwrYoCKrK8nF2BCmAGDF2nP1aWa28N3adr2z0YrZ0XddbE2_yMyO9q41oB4_yQkbjbP5VxPRjQ6696_IzFcVaWdcZmX8QUQQVQ34VBrlFCE4aEc21yi_6ViU9O9gvldxY86NX4Wn2SIs2qGfj-yS7-vTxcvlldnr-ebVcnM4khSTOGCOAKAJZKUGlRc1QXTCqEaISCwB1QUUDmgrUrGBQy6ZpBrMEqqwJ0SVGJ9nLve6udYGPfQsc0IpAwBgmiVjticaJLd950wl_w50w_I_B-TUXPhrZKq6aklYAEQZSelXhWssapzwCFhKXUCet92O2vu5UI9XQ1nYiOvVYs-Frd81xhRmlQzFvRgHvhjZF3pkgVdsKq1yf6q4KkkiS7vWfaDoiJUVFaUJf_YXe34iRWot0VmO1SyXKQZQvkhuDCpZloub3UOlpVBqENI_aJPsk4O0kIDFR_Yxr0YfAV98u_p89_z5lXx-wGyXauAmu7YdJDVMQ78E00iF4pe_uAxR8WKfbbvBhnfi4TinsxeFd3gXd7g_6DeK4G4E</recordid><startdate>20160428</startdate><enddate>20160428</enddate><creator>Tandon, Disha</creator><creator>Haque, Mohammed Monzoorul</creator><creator>Mande, Sharmila S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160428</creationdate><title>Inferring Intra-Community Microbial Interaction Patterns from Metagenomic Datasets Using Associative Rule Mining Techniques</title><author>Tandon, Disha ; Haque, Mohammed Monzoorul ; Mande, Sharmila S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-99515e5296c18fab93b097f337c4a12f07ad1d81b9092fcddd4a12c1e6b55f643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Classification</topic><topic>Communities</topic><topic>Computer and Information Sciences</topic><topic>Correlation</topic><topic>Data mining</topic><topic>Data Mining - methods</topic><topic>Data processing</topic><topic>Databases, Genetic</topic><topic>Datasets</topic><topic>Downloading</topic><topic>Ecological niches</topic><topic>Ecology and Environmental Sciences</topic><topic>Efficiency</topic><topic>Gastrointestinal Microbiome</topic><topic>Genomics</topic><topic>Humans</topic><topic>Intestinal microflora</topic><topic>Metabolism</topic><topic>Metagenome</topic><topic>Methods</topic><topic>Microbial activity</topic><topic>Microbial colonies</topic><topic>Microbial Interactions</topic><topic>Microbiomes</topic><topic>Microorganisms</topic><topic>Mining</topic><topic>Pattern recognition (Computers)</topic><topic>Phylogenetics</topic><topic>Physical Sciences</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Research and Analysis Methods</topic><topic>Samples</topic><topic>Statistical analysis</topic><topic>Statistical correlation</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Subgroups</topic><topic>Taxonomy</topic><topic>Web Browser</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tandon, Disha</creatorcontrib><creatorcontrib>Haque, Mohammed Monzoorul</creatorcontrib><creatorcontrib>Mande, Sharmila S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tandon, Disha</au><au>Haque, Mohammed Monzoorul</au><au>Mande, Sharmila S</au><au>Ahmed, Niyaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring Intra-Community Microbial Interaction Patterns from Metagenomic Datasets Using Associative Rule Mining Techniques</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-04-28</date><risdate>2016</risdate><volume>11</volume><issue>4</issue><spage>e0154493</spage><epage>e0154493</epage><pages>e0154493-e0154493</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The nature of inter-microbial metabolic interactions defines the stability of microbial communities residing in any ecological niche. Deciphering these interaction patterns is crucial for understanding the mode/mechanism(s) through which an individual microbial community transitions from one state to another (e.g. from a healthy to a diseased state). Statistical correlation techniques have been traditionally employed for mining microbial interaction patterns from taxonomic abundance data corresponding to a given microbial community. In spite of their efficiency, these correlation techniques can capture only 'pair-wise interactions'. Moreover, their emphasis on statistical significance can potentially result in missing out on several interactions that are relevant from a biological standpoint. This study explores the applicability of one of the earliest association rule mining algorithm i.e. the 'Apriori algorithm' for deriving 'microbial association rules' from the taxonomic profile of given microbial community. The classical Apriori approach derives association rules by analysing patterns of co-occurrence/co-exclusion between various '(subsets of) features/items' across various samples. Using real-world microbiome data, the efficiency/utility of this rule mining approach in deciphering multiple (biologically meaningful) association patterns between 'subsets/subgroups' of microbes (constituting microbiome samples) is demonstrated. As an example, association rules derived from publicly available gut microbiome datasets indicate an association between a group of microbes (Faecalibacterium, Dorea, and Blautia) that are known to have mutualistic metabolic associations among themselves. Application of the rule mining approach on gut microbiomes (sourced from the Human Microbiome Project) further indicated similar microbial association patterns in gut microbiomes irrespective of the gender of the subjects. A Linux implementation of the Association Rule Mining (ARM) software (customised for deriving 'microbial association rules' from microbiome data) is freely available for download from the following link: http://metagenomics.atc.tcs.com/arm.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27124399</pmid><doi>10.1371/journal.pone.0154493</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-04, Vol.11 (4), p.e0154493-e0154493
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1785219945
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Analysis
Bioinformatics
Biology and Life Sciences
Classification
Communities
Computer and Information Sciences
Correlation
Data mining
Data Mining - methods
Data processing
Databases, Genetic
Datasets
Downloading
Ecological niches
Ecology and Environmental Sciences
Efficiency
Gastrointestinal Microbiome
Genomics
Humans
Intestinal microflora
Metabolism
Metagenome
Methods
Microbial activity
Microbial colonies
Microbial Interactions
Microbiomes
Microorganisms
Mining
Pattern recognition (Computers)
Phylogenetics
Physical Sciences
R&D
Research & development
Research and Analysis Methods
Samples
Statistical analysis
Statistical correlation
Statistical methods
Studies
Subgroups
Taxonomy
Web Browser
title Inferring Intra-Community Microbial Interaction Patterns from Metagenomic Datasets Using Associative Rule Mining Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A51%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20Intra-Community%20Microbial%20Interaction%20Patterns%20from%20Metagenomic%20Datasets%20Using%20Associative%20Rule%20Mining%20Techniques&rft.jtitle=PloS%20one&rft.au=Tandon,%20Disha&rft.date=2016-04-28&rft.volume=11&rft.issue=4&rft.spage=e0154493&rft.epage=e0154493&rft.pages=e0154493-e0154493&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0154493&rft_dat=%3Cgale_plos_%3EA453418266%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1785219945&rft_id=info:pmid/27124399&rft_galeid=A453418266&rft_doaj_id=oai_doaj_org_article_ed678135917c4e84bfcb455fa20c462f&rfr_iscdi=true