Efficient Activation of Apoptotic Signaling during Mitotic Arrest with AK301

Mitotic inhibitors are widely utilized chemotherapeutic agents that take advantage of mitotic defects in cancer cells. We have identified a novel class of piperazine-based mitotic inhibitors, of which AK301 is the most potent derivative identified to date (EC50 < 200 nM). Colon cancer cells arres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-04, Vol.11 (4), p.e0153818-e0153818
Hauptverfasser: Chopra, Avijeet, Bond, Michael J, Bleiler, Marina, Yeagley, Michelle, Wright, Dennis, Giardina, Charles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0153818
container_issue 4
container_start_page e0153818
container_title PloS one
container_volume 11
creator Chopra, Avijeet
Bond, Michael J
Bleiler, Marina
Yeagley, Michelle
Wright, Dennis
Giardina, Charles
description Mitotic inhibitors are widely utilized chemotherapeutic agents that take advantage of mitotic defects in cancer cells. We have identified a novel class of piperazine-based mitotic inhibitors, of which AK301 is the most potent derivative identified to date (EC50 < 200 nM). Colon cancer cells arrested in mitosis with AK301 readily underwent a p53-dependent apoptosis following compound withdrawal and arrest release. This apoptotic response was significantly higher for AK301 than for other mitotic inhibitors tested (colchicine, vincristine, and BI 2536). AK301-treated cells exhibited a robust mitosis-associated DNA damage response, including ATM activation, γH2AX phosphorylation and p53 stabilization. The association between mitotic signaling and the DNA damage response was supported by the finding that Aurora B inhibition reduced the level of γH2AX staining. Confocal imaging of AK301-treated cells revealed multiple γ-tubulin microtubule organizing centers attached to microtubules, but with limited centrosome migration, raising the possibility that aberrant microtubule pulling may underlie DNA breakage. AK301 selectively targeted APC-mutant colonocytes and promoted TNF-induced apoptosis in p53-mutant colon cancer cells. Our findings indicate that AK301 induces a mitotic arrest state with a highly active DNA damage response. Together with a reversible arrest state, AK301 is a potent promoter of a mitosis-to-apoptosis transition that can target cancer cells with mitotic defects.
doi_str_mv 10.1371/journal.pone.0153818
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1782829837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A453426923</galeid><doaj_id>oai_doaj_org_article_bdcf9b9a43564627877b0e6001f86a74</doaj_id><sourcerecordid>A453426923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-9adf621c6b2d91f5b03ff13ba989cc683f49d53cab135efc3c9a89cfd971b9cd3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjPlo0-RGKMuqgyMLrnob0nx0MnSaMUlX_femO91lKnshvUjJec57kjdvlj2HYAlxBd9t3eB70S33rtdLAEtMIX2QnUKG0YIggB8e_Z9kT0LYApAgQh5nJ6gCrIIlO83WF8ZYaXUf81pGey2idX3uTF7v3T66aGV-Zds0x_ZtrgY_Ll_soVB7r0PMf9m4yevPGMCn2SMjuqCfTetZ9v3DxbfzT4v15cfVeb1eSMJQXDChDEFQkgYpBk3ZAGwMxI1glElJKDYFUyWWooG41EZiyUSqGJXO3DCp8Fn28qC771zgkxGBw4oiihjFVSJWB0I5seV7b3fC_-FOWH6z4XzLhU936DRvlDSsYaLAJSkIqmhVNUATAKChRFRF0no_TRuanVYyeeVFNxOdV3q74a275gXFFCGYBN5MAt79HJJlfGeD1F0neu2Gm3NjBgtYjrNe_YPef7uJakW6gO2NS3PlKMrrosQFSjbjRC3vodKn9M7KlBpj0_6s4e2sITFR_46tGELgq6uv_89e_pizr4_YjRZd3ATXDWPUwhwsDqD0LgSvzZ3JEPAx9Ldu8DH0fAp9antx_EB3Tbcpx38BwEj7fw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1782829837</pqid></control><display><type>article</type><title>Efficient Activation of Apoptotic Signaling during Mitotic Arrest with AK301</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chopra, Avijeet ; Bond, Michael J ; Bleiler, Marina ; Yeagley, Michelle ; Wright, Dennis ; Giardina, Charles</creator><contributor>Amin, A R M Ruhul</contributor><creatorcontrib>Chopra, Avijeet ; Bond, Michael J ; Bleiler, Marina ; Yeagley, Michelle ; Wright, Dennis ; Giardina, Charles ; Amin, A R M Ruhul</creatorcontrib><description>Mitotic inhibitors are widely utilized chemotherapeutic agents that take advantage of mitotic defects in cancer cells. We have identified a novel class of piperazine-based mitotic inhibitors, of which AK301 is the most potent derivative identified to date (EC50 &lt; 200 nM). Colon cancer cells arrested in mitosis with AK301 readily underwent a p53-dependent apoptosis following compound withdrawal and arrest release. This apoptotic response was significantly higher for AK301 than for other mitotic inhibitors tested (colchicine, vincristine, and BI 2536). AK301-treated cells exhibited a robust mitosis-associated DNA damage response, including ATM activation, γH2AX phosphorylation and p53 stabilization. The association between mitotic signaling and the DNA damage response was supported by the finding that Aurora B inhibition reduced the level of γH2AX staining. Confocal imaging of AK301-treated cells revealed multiple γ-tubulin microtubule organizing centers attached to microtubules, but with limited centrosome migration, raising the possibility that aberrant microtubule pulling may underlie DNA breakage. AK301 selectively targeted APC-mutant colonocytes and promoted TNF-induced apoptosis in p53-mutant colon cancer cells. Our findings indicate that AK301 induces a mitotic arrest state with a highly active DNA damage response. Together with a reversible arrest state, AK301 is a potent promoter of a mitosis-to-apoptosis transition that can target cancer cells with mitotic defects.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0153818</identifier><identifier>PMID: 27097159</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aberration ; Activation ; Adenomatous polyposis coli ; Adenomatous Polyposis Coli Protein - genetics ; Amino acids ; Animals ; Antibiotics ; Apoptosis ; Apoptosis - drug effects ; Ataxia Telangiectasia Mutated Proteins - metabolism ; Aurora B protein ; Biology ; Biology and Life Sciences ; Breakage ; Cancer ; Cancer therapies ; Caspase 3 - metabolism ; Cell cycle ; Cell Cycle Checkpoints - drug effects ; Cellular signal transduction ; Chemotherapy ; Chromosomes ; Colchicine ; Colon ; Colon - cytology ; Colon cancer ; Colorectal cancer ; Damage ; Defects ; Deoxyribonucleic acid ; DNA ; DNA Breaks - drug effects ; DNA damage ; Genetic aspects ; HCT116 Cells ; HT29 Cells ; Humans ; Inhibitors ; Kinases ; Medical research ; Medicine and Health Sciences ; Mice ; Microtubules ; Mitosis ; Mitosis - drug effects ; Mutation ; p53 Protein ; Phosphorylation ; Physiological aspects ; Piperazine ; Piperazines - pharmacology ; Proteins ; Research and Analysis Methods ; Signaling ; Tubulin ; Tumor necrosis factor ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Vincristine</subject><ispartof>PloS one, 2016-04, Vol.11 (4), p.e0153818-e0153818</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Chopra et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Chopra et al 2016 Chopra et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-9adf621c6b2d91f5b03ff13ba989cc683f49d53cab135efc3c9a89cfd971b9cd3</citedby><cites>FETCH-LOGICAL-c692t-9adf621c6b2d91f5b03ff13ba989cc683f49d53cab135efc3c9a89cfd971b9cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838221/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838221/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23853,27911,27912,53778,53780,79355,79356</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27097159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Amin, A R M Ruhul</contributor><creatorcontrib>Chopra, Avijeet</creatorcontrib><creatorcontrib>Bond, Michael J</creatorcontrib><creatorcontrib>Bleiler, Marina</creatorcontrib><creatorcontrib>Yeagley, Michelle</creatorcontrib><creatorcontrib>Wright, Dennis</creatorcontrib><creatorcontrib>Giardina, Charles</creatorcontrib><title>Efficient Activation of Apoptotic Signaling during Mitotic Arrest with AK301</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Mitotic inhibitors are widely utilized chemotherapeutic agents that take advantage of mitotic defects in cancer cells. We have identified a novel class of piperazine-based mitotic inhibitors, of which AK301 is the most potent derivative identified to date (EC50 &lt; 200 nM). Colon cancer cells arrested in mitosis with AK301 readily underwent a p53-dependent apoptosis following compound withdrawal and arrest release. This apoptotic response was significantly higher for AK301 than for other mitotic inhibitors tested (colchicine, vincristine, and BI 2536). AK301-treated cells exhibited a robust mitosis-associated DNA damage response, including ATM activation, γH2AX phosphorylation and p53 stabilization. The association between mitotic signaling and the DNA damage response was supported by the finding that Aurora B inhibition reduced the level of γH2AX staining. Confocal imaging of AK301-treated cells revealed multiple γ-tubulin microtubule organizing centers attached to microtubules, but with limited centrosome migration, raising the possibility that aberrant microtubule pulling may underlie DNA breakage. AK301 selectively targeted APC-mutant colonocytes and promoted TNF-induced apoptosis in p53-mutant colon cancer cells. Our findings indicate that AK301 induces a mitotic arrest state with a highly active DNA damage response. Together with a reversible arrest state, AK301 is a potent promoter of a mitosis-to-apoptosis transition that can target cancer cells with mitotic defects.</description><subject>Aberration</subject><subject>Activation</subject><subject>Adenomatous polyposis coli</subject><subject>Adenomatous Polyposis Coli Protein - genetics</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Antibiotics</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Ataxia Telangiectasia Mutated Proteins - metabolism</subject><subject>Aurora B protein</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Breakage</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Caspase 3 - metabolism</subject><subject>Cell cycle</subject><subject>Cell Cycle Checkpoints - drug effects</subject><subject>Cellular signal transduction</subject><subject>Chemotherapy</subject><subject>Chromosomes</subject><subject>Colchicine</subject><subject>Colon</subject><subject>Colon - cytology</subject><subject>Colon cancer</subject><subject>Colorectal cancer</subject><subject>Damage</subject><subject>Defects</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Breaks - drug effects</subject><subject>DNA damage</subject><subject>Genetic aspects</subject><subject>HCT116 Cells</subject><subject>HT29 Cells</subject><subject>Humans</subject><subject>Inhibitors</subject><subject>Kinases</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Microtubules</subject><subject>Mitosis</subject><subject>Mitosis - drug effects</subject><subject>Mutation</subject><subject>p53 Protein</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Piperazine</subject><subject>Piperazines - pharmacology</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Signaling</subject><subject>Tubulin</subject><subject>Tumor necrosis factor</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Vincristine</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjPlo0-RGKMuqgyMLrnob0nx0MnSaMUlX_femO91lKnshvUjJec57kjdvlj2HYAlxBd9t3eB70S33rtdLAEtMIX2QnUKG0YIggB8e_Z9kT0LYApAgQh5nJ6gCrIIlO83WF8ZYaXUf81pGey2idX3uTF7v3T66aGV-Zds0x_ZtrgY_Ll_soVB7r0PMf9m4yevPGMCn2SMjuqCfTetZ9v3DxbfzT4v15cfVeb1eSMJQXDChDEFQkgYpBk3ZAGwMxI1glElJKDYFUyWWooG41EZiyUSqGJXO3DCp8Fn28qC771zgkxGBw4oiihjFVSJWB0I5seV7b3fC_-FOWH6z4XzLhU936DRvlDSsYaLAJSkIqmhVNUATAKChRFRF0no_TRuanVYyeeVFNxOdV3q74a275gXFFCGYBN5MAt79HJJlfGeD1F0neu2Gm3NjBgtYjrNe_YPef7uJakW6gO2NS3PlKMrrosQFSjbjRC3vodKn9M7KlBpj0_6s4e2sITFR_46tGELgq6uv_89e_pizr4_YjRZd3ATXDWPUwhwsDqD0LgSvzZ3JEPAx9Ldu8DH0fAp9antx_EB3Tbcpx38BwEj7fw</recordid><startdate>20160420</startdate><enddate>20160420</enddate><creator>Chopra, Avijeet</creator><creator>Bond, Michael J</creator><creator>Bleiler, Marina</creator><creator>Yeagley, Michelle</creator><creator>Wright, Dennis</creator><creator>Giardina, Charles</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160420</creationdate><title>Efficient Activation of Apoptotic Signaling during Mitotic Arrest with AK301</title><author>Chopra, Avijeet ; Bond, Michael J ; Bleiler, Marina ; Yeagley, Michelle ; Wright, Dennis ; Giardina, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-9adf621c6b2d91f5b03ff13ba989cc683f49d53cab135efc3c9a89cfd971b9cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aberration</topic><topic>Activation</topic><topic>Adenomatous polyposis coli</topic><topic>Adenomatous Polyposis Coli Protein - genetics</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Antibiotics</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Ataxia Telangiectasia Mutated Proteins - metabolism</topic><topic>Aurora B protein</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Breakage</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Caspase 3 - metabolism</topic><topic>Cell cycle</topic><topic>Cell Cycle Checkpoints - drug effects</topic><topic>Cellular signal transduction</topic><topic>Chemotherapy</topic><topic>Chromosomes</topic><topic>Colchicine</topic><topic>Colon</topic><topic>Colon - cytology</topic><topic>Colon cancer</topic><topic>Colorectal cancer</topic><topic>Damage</topic><topic>Defects</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Breaks - drug effects</topic><topic>DNA damage</topic><topic>Genetic aspects</topic><topic>HCT116 Cells</topic><topic>HT29 Cells</topic><topic>Humans</topic><topic>Inhibitors</topic><topic>Kinases</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Microtubules</topic><topic>Mitosis</topic><topic>Mitosis - drug effects</topic><topic>Mutation</topic><topic>p53 Protein</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Piperazine</topic><topic>Piperazines - pharmacology</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Signaling</topic><topic>Tubulin</topic><topic>Tumor necrosis factor</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Vincristine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chopra, Avijeet</creatorcontrib><creatorcontrib>Bond, Michael J</creatorcontrib><creatorcontrib>Bleiler, Marina</creatorcontrib><creatorcontrib>Yeagley, Michelle</creatorcontrib><creatorcontrib>Wright, Dennis</creatorcontrib><creatorcontrib>Giardina, Charles</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chopra, Avijeet</au><au>Bond, Michael J</au><au>Bleiler, Marina</au><au>Yeagley, Michelle</au><au>Wright, Dennis</au><au>Giardina, Charles</au><au>Amin, A R M Ruhul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Activation of Apoptotic Signaling during Mitotic Arrest with AK301</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-04-20</date><risdate>2016</risdate><volume>11</volume><issue>4</issue><spage>e0153818</spage><epage>e0153818</epage><pages>e0153818-e0153818</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Mitotic inhibitors are widely utilized chemotherapeutic agents that take advantage of mitotic defects in cancer cells. We have identified a novel class of piperazine-based mitotic inhibitors, of which AK301 is the most potent derivative identified to date (EC50 &lt; 200 nM). Colon cancer cells arrested in mitosis with AK301 readily underwent a p53-dependent apoptosis following compound withdrawal and arrest release. This apoptotic response was significantly higher for AK301 than for other mitotic inhibitors tested (colchicine, vincristine, and BI 2536). AK301-treated cells exhibited a robust mitosis-associated DNA damage response, including ATM activation, γH2AX phosphorylation and p53 stabilization. The association between mitotic signaling and the DNA damage response was supported by the finding that Aurora B inhibition reduced the level of γH2AX staining. Confocal imaging of AK301-treated cells revealed multiple γ-tubulin microtubule organizing centers attached to microtubules, but with limited centrosome migration, raising the possibility that aberrant microtubule pulling may underlie DNA breakage. AK301 selectively targeted APC-mutant colonocytes and promoted TNF-induced apoptosis in p53-mutant colon cancer cells. Our findings indicate that AK301 induces a mitotic arrest state with a highly active DNA damage response. Together with a reversible arrest state, AK301 is a potent promoter of a mitosis-to-apoptosis transition that can target cancer cells with mitotic defects.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27097159</pmid><doi>10.1371/journal.pone.0153818</doi><tpages>e0153818</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-04, Vol.11 (4), p.e0153818-e0153818
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1782829837
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Aberration
Activation
Adenomatous polyposis coli
Adenomatous Polyposis Coli Protein - genetics
Amino acids
Animals
Antibiotics
Apoptosis
Apoptosis - drug effects
Ataxia Telangiectasia Mutated Proteins - metabolism
Aurora B protein
Biology
Biology and Life Sciences
Breakage
Cancer
Cancer therapies
Caspase 3 - metabolism
Cell cycle
Cell Cycle Checkpoints - drug effects
Cellular signal transduction
Chemotherapy
Chromosomes
Colchicine
Colon
Colon - cytology
Colon cancer
Colorectal cancer
Damage
Defects
Deoxyribonucleic acid
DNA
DNA Breaks - drug effects
DNA damage
Genetic aspects
HCT116 Cells
HT29 Cells
Humans
Inhibitors
Kinases
Medical research
Medicine and Health Sciences
Mice
Microtubules
Mitosis
Mitosis - drug effects
Mutation
p53 Protein
Phosphorylation
Physiological aspects
Piperazine
Piperazines - pharmacology
Proteins
Research and Analysis Methods
Signaling
Tubulin
Tumor necrosis factor
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Vincristine
title Efficient Activation of Apoptotic Signaling during Mitotic Arrest with AK301
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Activation%20of%20Apoptotic%20Signaling%20during%20Mitotic%20Arrest%20with%20AK301&rft.jtitle=PloS%20one&rft.au=Chopra,%20Avijeet&rft.date=2016-04-20&rft.volume=11&rft.issue=4&rft.spage=e0153818&rft.epage=e0153818&rft.pages=e0153818-e0153818&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0153818&rft_dat=%3Cgale_plos_%3EA453426923%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1782829837&rft_id=info:pmid/27097159&rft_galeid=A453426923&rft_doaj_id=oai_doaj_org_article_bdcf9b9a43564627877b0e6001f86a74&rfr_iscdi=true