The Role of Oxygen in Avascular Tumor Growth

The oxygen status of a tumor has significant clinical implications for treatment prognosis, with well-oxygenated subvolumes responding markedly better to radiotherapy than poorly supplied regions. Oxygen is essential for tumor growth, yet estimation of local oxygen distribution can be difficult to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-04, Vol.11 (4), p.e0153692
Hauptverfasser: Grimes, David Robert, Kannan, Pavitra, McIntyre, Alan, Kavanagh, Anthony, Siddiky, Abul, Wigfield, Simon, Harris, Adrian, Partridge, Mike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page e0153692
container_title PloS one
container_volume 11
creator Grimes, David Robert
Kannan, Pavitra
McIntyre, Alan
Kavanagh, Anthony
Siddiky, Abul
Wigfield, Simon
Harris, Adrian
Partridge, Mike
description The oxygen status of a tumor has significant clinical implications for treatment prognosis, with well-oxygenated subvolumes responding markedly better to radiotherapy than poorly supplied regions. Oxygen is essential for tumor growth, yet estimation of local oxygen distribution can be difficult to ascertain in situ, due to chaotic patterns of vasculature. It is possible to avoid this confounding influence by using avascular tumor models, such as tumor spheroids, a much better approximation of realistic tumor dynamics than monolayers, where oxygen supply can be described by diffusion alone. Similar to in situ tumours, spheroids exhibit an approximately sigmoidal growth curve, often approximated and fitted by logistic and Gompertzian sigmoid functions. These describe the basic rate of growth well, but do not offer an explicitly mechanistic explanation. This work examines the oxygen dynamics of spheroids and demonstrates that this growth can be derived mechanistically with cellular doubling time and oxygen consumption rate (OCR) being key parameters. The model is fitted to growth curves for a range of cell lines and derived values of OCR are validated using clinical measurement. Finally, we illustrate how changes in OCR due to gemcitabine treatment can be directly inferred using this model.
doi_str_mv 10.1371/journal.pone.0153692
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1781800860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A453448000</galeid><doaj_id>oai_doaj_org_article_81e85474e86b4d5491b90aadd6f5de28</doaj_id><sourcerecordid>A453448000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-3879189f765eca0cd27f00e93f2f88a67a654d6bb1292452a318b7695402f6ec3</originalsourceid><addsrcrecordid>eNqNkl2L1DAYhYso7of-A9GCIAjOmO-kN8Kw6DqwMLCO3oY0TdoMnWY2adfdf78Zp7tMQUFykZA85-TNm5NlbyCYQ8zh540fQqfa-c53Zg4gxaxAz7JTWGA0Ywjg50frk-wsxg0AFAvGXmYniAMhOAKn2ad1Y_Jr35rc23x1d1-bLnddvrhVUQ-tCvl62PqQXwb_u29eZS-saqN5Pc7n2c9vX9cX32dXq8vlxeJqplMN_QwLXkBRWM6o0QroCnELgCmwRVYIxbhilFSsLCEqEKFIYShKzgpKALLMaHyevTv47lof5fjQKCEXUAAgGEjE8kBUXm3kLritCvfSKyf_bPhQSxV6p1sjBTSCEk6MYCWpKClgWQClqopZWhkkkteX8bah3JpKm64Pqp2YTk8618ja30oiMAWUJoP3o0HwN4OJ_T9KHqlapapcZ30y01sXtVwQiglJ3J6a_4VKozJbp9NXW5f2J4KPE0FienPX12qIUS5_XP8_u_o1ZT8csY1Rbd9E3w69812cguQA6uBjDMY-dQ4CuU_qYzfkPqlyTGqSvT3u-pPoMZr4Aeom4Co</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781800860</pqid></control><display><type>article</type><title>The Role of Oxygen in Avascular Tumor Growth</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Grimes, David Robert ; Kannan, Pavitra ; McIntyre, Alan ; Kavanagh, Anthony ; Siddiky, Abul ; Wigfield, Simon ; Harris, Adrian ; Partridge, Mike</creator><contributor>Burns, Jorge Sans</contributor><creatorcontrib>Grimes, David Robert ; Kannan, Pavitra ; McIntyre, Alan ; Kavanagh, Anthony ; Siddiky, Abul ; Wigfield, Simon ; Harris, Adrian ; Partridge, Mike ; Burns, Jorge Sans</creatorcontrib><description>The oxygen status of a tumor has significant clinical implications for treatment prognosis, with well-oxygenated subvolumes responding markedly better to radiotherapy than poorly supplied regions. Oxygen is essential for tumor growth, yet estimation of local oxygen distribution can be difficult to ascertain in situ, due to chaotic patterns of vasculature. It is possible to avoid this confounding influence by using avascular tumor models, such as tumor spheroids, a much better approximation of realistic tumor dynamics than monolayers, where oxygen supply can be described by diffusion alone. Similar to in situ tumours, spheroids exhibit an approximately sigmoidal growth curve, often approximated and fitted by logistic and Gompertzian sigmoid functions. These describe the basic rate of growth well, but do not offer an explicitly mechanistic explanation. This work examines the oxygen dynamics of spheroids and demonstrates that this growth can be derived mechanistically with cellular doubling time and oxygen consumption rate (OCR) being key parameters. The model is fitted to growth curves for a range of cell lines and derived values of OCR are validated using clinical measurement. Finally, we illustrate how changes in OCR due to gemcitabine treatment can be directly inferred using this model.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0153692</identifier><identifier>PMID: 27088720</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antimetabolites, Antineoplastic - pharmacology ; Biology ; Biology and Life Sciences ; Cancer therapies ; Chemical properties ; Deoxycytidine - analogs &amp; derivatives ; Deoxycytidine - pharmacology ; Gemcitabine ; Growth curves ; Humans ; Hypoxia ; Laboratories ; Mathematical models ; Medical research ; Medicine ; Medicine and Health Sciences ; Metabolism ; Models, Theoretical ; Neoplasms - drug therapy ; Neoplasms - pathology ; Oncology ; Oxygen ; Oxygen - metabolism ; Oxygen consumption ; Oxygen consumption (Metabolism) ; Oxygen Consumption - drug effects ; Physical Sciences ; Physiology ; Prevention ; Radiation therapy ; Research and Analysis Methods ; Spheroids ; Transforming growth factors ; Tumor Cells, Cultured ; Tumors</subject><ispartof>PloS one, 2016-04, Vol.11 (4), p.e0153692</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Grimes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Grimes et al 2016 Grimes et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-3879189f765eca0cd27f00e93f2f88a67a654d6bb1292452a318b7695402f6ec3</citedby><cites>FETCH-LOGICAL-c692t-3879189f765eca0cd27f00e93f2f88a67a654d6bb1292452a318b7695402f6ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4835055/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4835055/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79472,79473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27088720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Burns, Jorge Sans</contributor><creatorcontrib>Grimes, David Robert</creatorcontrib><creatorcontrib>Kannan, Pavitra</creatorcontrib><creatorcontrib>McIntyre, Alan</creatorcontrib><creatorcontrib>Kavanagh, Anthony</creatorcontrib><creatorcontrib>Siddiky, Abul</creatorcontrib><creatorcontrib>Wigfield, Simon</creatorcontrib><creatorcontrib>Harris, Adrian</creatorcontrib><creatorcontrib>Partridge, Mike</creatorcontrib><title>The Role of Oxygen in Avascular Tumor Growth</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The oxygen status of a tumor has significant clinical implications for treatment prognosis, with well-oxygenated subvolumes responding markedly better to radiotherapy than poorly supplied regions. Oxygen is essential for tumor growth, yet estimation of local oxygen distribution can be difficult to ascertain in situ, due to chaotic patterns of vasculature. It is possible to avoid this confounding influence by using avascular tumor models, such as tumor spheroids, a much better approximation of realistic tumor dynamics than monolayers, where oxygen supply can be described by diffusion alone. Similar to in situ tumours, spheroids exhibit an approximately sigmoidal growth curve, often approximated and fitted by logistic and Gompertzian sigmoid functions. These describe the basic rate of growth well, but do not offer an explicitly mechanistic explanation. This work examines the oxygen dynamics of spheroids and demonstrates that this growth can be derived mechanistically with cellular doubling time and oxygen consumption rate (OCR) being key parameters. The model is fitted to growth curves for a range of cell lines and derived values of OCR are validated using clinical measurement. Finally, we illustrate how changes in OCR due to gemcitabine treatment can be directly inferred using this model.</description><subject>Antimetabolites, Antineoplastic - pharmacology</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cancer therapies</subject><subject>Chemical properties</subject><subject>Deoxycytidine - analogs &amp; derivatives</subject><subject>Deoxycytidine - pharmacology</subject><subject>Gemcitabine</subject><subject>Growth curves</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Models, Theoretical</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - pathology</subject><subject>Oncology</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Oxygen consumption</subject><subject>Oxygen consumption (Metabolism)</subject><subject>Oxygen Consumption - drug effects</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Prevention</subject><subject>Radiation therapy</subject><subject>Research and Analysis Methods</subject><subject>Spheroids</subject><subject>Transforming growth factors</subject><subject>Tumor Cells, Cultured</subject><subject>Tumors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAYhYso7of-A9GCIAjOmO-kN8Kw6DqwMLCO3oY0TdoMnWY2adfdf78Zp7tMQUFykZA85-TNm5NlbyCYQ8zh540fQqfa-c53Zg4gxaxAz7JTWGA0Ywjg50frk-wsxg0AFAvGXmYniAMhOAKn2ad1Y_Jr35rc23x1d1-bLnddvrhVUQ-tCvl62PqQXwb_u29eZS-saqN5Pc7n2c9vX9cX32dXq8vlxeJqplMN_QwLXkBRWM6o0QroCnELgCmwRVYIxbhilFSsLCEqEKFIYShKzgpKALLMaHyevTv47lof5fjQKCEXUAAgGEjE8kBUXm3kLritCvfSKyf_bPhQSxV6p1sjBTSCEk6MYCWpKClgWQClqopZWhkkkteX8bah3JpKm64Pqp2YTk8618ja30oiMAWUJoP3o0HwN4OJ_T9KHqlapapcZ30y01sXtVwQiglJ3J6a_4VKozJbp9NXW5f2J4KPE0FienPX12qIUS5_XP8_u_o1ZT8csY1Rbd9E3w69812cguQA6uBjDMY-dQ4CuU_qYzfkPqlyTGqSvT3u-pPoMZr4Aeom4Co</recordid><startdate>20160418</startdate><enddate>20160418</enddate><creator>Grimes, David Robert</creator><creator>Kannan, Pavitra</creator><creator>McIntyre, Alan</creator><creator>Kavanagh, Anthony</creator><creator>Siddiky, Abul</creator><creator>Wigfield, Simon</creator><creator>Harris, Adrian</creator><creator>Partridge, Mike</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160418</creationdate><title>The Role of Oxygen in Avascular Tumor Growth</title><author>Grimes, David Robert ; Kannan, Pavitra ; McIntyre, Alan ; Kavanagh, Anthony ; Siddiky, Abul ; Wigfield, Simon ; Harris, Adrian ; Partridge, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-3879189f765eca0cd27f00e93f2f88a67a654d6bb1292452a318b7695402f6ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antimetabolites, Antineoplastic - pharmacology</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cancer therapies</topic><topic>Chemical properties</topic><topic>Deoxycytidine - analogs &amp; derivatives</topic><topic>Deoxycytidine - pharmacology</topic><topic>Gemcitabine</topic><topic>Growth curves</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Models, Theoretical</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - pathology</topic><topic>Oncology</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Oxygen consumption</topic><topic>Oxygen consumption (Metabolism)</topic><topic>Oxygen Consumption - drug effects</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Prevention</topic><topic>Radiation therapy</topic><topic>Research and Analysis Methods</topic><topic>Spheroids</topic><topic>Transforming growth factors</topic><topic>Tumor Cells, Cultured</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimes, David Robert</creatorcontrib><creatorcontrib>Kannan, Pavitra</creatorcontrib><creatorcontrib>McIntyre, Alan</creatorcontrib><creatorcontrib>Kavanagh, Anthony</creatorcontrib><creatorcontrib>Siddiky, Abul</creatorcontrib><creatorcontrib>Wigfield, Simon</creatorcontrib><creatorcontrib>Harris, Adrian</creatorcontrib><creatorcontrib>Partridge, Mike</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimes, David Robert</au><au>Kannan, Pavitra</au><au>McIntyre, Alan</au><au>Kavanagh, Anthony</au><au>Siddiky, Abul</au><au>Wigfield, Simon</au><au>Harris, Adrian</au><au>Partridge, Mike</au><au>Burns, Jorge Sans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Oxygen in Avascular Tumor Growth</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-04-18</date><risdate>2016</risdate><volume>11</volume><issue>4</issue><spage>e0153692</spage><pages>e0153692-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The oxygen status of a tumor has significant clinical implications for treatment prognosis, with well-oxygenated subvolumes responding markedly better to radiotherapy than poorly supplied regions. Oxygen is essential for tumor growth, yet estimation of local oxygen distribution can be difficult to ascertain in situ, due to chaotic patterns of vasculature. It is possible to avoid this confounding influence by using avascular tumor models, such as tumor spheroids, a much better approximation of realistic tumor dynamics than monolayers, where oxygen supply can be described by diffusion alone. Similar to in situ tumours, spheroids exhibit an approximately sigmoidal growth curve, often approximated and fitted by logistic and Gompertzian sigmoid functions. These describe the basic rate of growth well, but do not offer an explicitly mechanistic explanation. This work examines the oxygen dynamics of spheroids and demonstrates that this growth can be derived mechanistically with cellular doubling time and oxygen consumption rate (OCR) being key parameters. The model is fitted to growth curves for a range of cell lines and derived values of OCR are validated using clinical measurement. Finally, we illustrate how changes in OCR due to gemcitabine treatment can be directly inferred using this model.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27088720</pmid><doi>10.1371/journal.pone.0153692</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-04, Vol.11 (4), p.e0153692
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1781800860
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Antimetabolites, Antineoplastic - pharmacology
Biology
Biology and Life Sciences
Cancer therapies
Chemical properties
Deoxycytidine - analogs & derivatives
Deoxycytidine - pharmacology
Gemcitabine
Growth curves
Humans
Hypoxia
Laboratories
Mathematical models
Medical research
Medicine
Medicine and Health Sciences
Metabolism
Models, Theoretical
Neoplasms - drug therapy
Neoplasms - pathology
Oncology
Oxygen
Oxygen - metabolism
Oxygen consumption
Oxygen consumption (Metabolism)
Oxygen Consumption - drug effects
Physical Sciences
Physiology
Prevention
Radiation therapy
Research and Analysis Methods
Spheroids
Transforming growth factors
Tumor Cells, Cultured
Tumors
title The Role of Oxygen in Avascular Tumor Growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Oxygen%20in%20Avascular%20Tumor%20Growth&rft.jtitle=PloS%20one&rft.au=Grimes,%20David%20Robert&rft.date=2016-04-18&rft.volume=11&rft.issue=4&rft.spage=e0153692&rft.pages=e0153692-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0153692&rft_dat=%3Cgale_plos_%3EA453448000%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781800860&rft_id=info:pmid/27088720&rft_galeid=A453448000&rft_doaj_id=oai_doaj_org_article_81e85474e86b4d5491b90aadd6f5de28&rfr_iscdi=true