The Role of Oxygen in Avascular Tumor Growth
The oxygen status of a tumor has significant clinical implications for treatment prognosis, with well-oxygenated subvolumes responding markedly better to radiotherapy than poorly supplied regions. Oxygen is essential for tumor growth, yet estimation of local oxygen distribution can be difficult to a...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-04, Vol.11 (4), p.e0153692 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | e0153692 |
container_title | PloS one |
container_volume | 11 |
creator | Grimes, David Robert Kannan, Pavitra McIntyre, Alan Kavanagh, Anthony Siddiky, Abul Wigfield, Simon Harris, Adrian Partridge, Mike |
description | The oxygen status of a tumor has significant clinical implications for treatment prognosis, with well-oxygenated subvolumes responding markedly better to radiotherapy than poorly supplied regions. Oxygen is essential for tumor growth, yet estimation of local oxygen distribution can be difficult to ascertain in situ, due to chaotic patterns of vasculature. It is possible to avoid this confounding influence by using avascular tumor models, such as tumor spheroids, a much better approximation of realistic tumor dynamics than monolayers, where oxygen supply can be described by diffusion alone. Similar to in situ tumours, spheroids exhibit an approximately sigmoidal growth curve, often approximated and fitted by logistic and Gompertzian sigmoid functions. These describe the basic rate of growth well, but do not offer an explicitly mechanistic explanation. This work examines the oxygen dynamics of spheroids and demonstrates that this growth can be derived mechanistically with cellular doubling time and oxygen consumption rate (OCR) being key parameters. The model is fitted to growth curves for a range of cell lines and derived values of OCR are validated using clinical measurement. Finally, we illustrate how changes in OCR due to gemcitabine treatment can be directly inferred using this model. |
doi_str_mv | 10.1371/journal.pone.0153692 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1781800860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A453448000</galeid><doaj_id>oai_doaj_org_article_81e85474e86b4d5491b90aadd6f5de28</doaj_id><sourcerecordid>A453448000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-3879189f765eca0cd27f00e93f2f88a67a654d6bb1292452a318b7695402f6ec3</originalsourceid><addsrcrecordid>eNqNkl2L1DAYhYso7of-A9GCIAjOmO-kN8Kw6DqwMLCO3oY0TdoMnWY2adfdf78Zp7tMQUFykZA85-TNm5NlbyCYQ8zh540fQqfa-c53Zg4gxaxAz7JTWGA0Ywjg50frk-wsxg0AFAvGXmYniAMhOAKn2ad1Y_Jr35rc23x1d1-bLnddvrhVUQ-tCvl62PqQXwb_u29eZS-saqN5Pc7n2c9vX9cX32dXq8vlxeJqplMN_QwLXkBRWM6o0QroCnELgCmwRVYIxbhilFSsLCEqEKFIYShKzgpKALLMaHyevTv47lof5fjQKCEXUAAgGEjE8kBUXm3kLritCvfSKyf_bPhQSxV6p1sjBTSCEk6MYCWpKClgWQClqopZWhkkkteX8bah3JpKm64Pqp2YTk8618ja30oiMAWUJoP3o0HwN4OJ_T9KHqlapapcZ30y01sXtVwQiglJ3J6a_4VKozJbp9NXW5f2J4KPE0FienPX12qIUS5_XP8_u_o1ZT8csY1Rbd9E3w69812cguQA6uBjDMY-dQ4CuU_qYzfkPqlyTGqSvT3u-pPoMZr4Aeom4Co</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781800860</pqid></control><display><type>article</type><title>The Role of Oxygen in Avascular Tumor Growth</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Grimes, David Robert ; Kannan, Pavitra ; McIntyre, Alan ; Kavanagh, Anthony ; Siddiky, Abul ; Wigfield, Simon ; Harris, Adrian ; Partridge, Mike</creator><contributor>Burns, Jorge Sans</contributor><creatorcontrib>Grimes, David Robert ; Kannan, Pavitra ; McIntyre, Alan ; Kavanagh, Anthony ; Siddiky, Abul ; Wigfield, Simon ; Harris, Adrian ; Partridge, Mike ; Burns, Jorge Sans</creatorcontrib><description>The oxygen status of a tumor has significant clinical implications for treatment prognosis, with well-oxygenated subvolumes responding markedly better to radiotherapy than poorly supplied regions. Oxygen is essential for tumor growth, yet estimation of local oxygen distribution can be difficult to ascertain in situ, due to chaotic patterns of vasculature. It is possible to avoid this confounding influence by using avascular tumor models, such as tumor spheroids, a much better approximation of realistic tumor dynamics than monolayers, where oxygen supply can be described by diffusion alone. Similar to in situ tumours, spheroids exhibit an approximately sigmoidal growth curve, often approximated and fitted by logistic and Gompertzian sigmoid functions. These describe the basic rate of growth well, but do not offer an explicitly mechanistic explanation. This work examines the oxygen dynamics of spheroids and demonstrates that this growth can be derived mechanistically with cellular doubling time and oxygen consumption rate (OCR) being key parameters. The model is fitted to growth curves for a range of cell lines and derived values of OCR are validated using clinical measurement. Finally, we illustrate how changes in OCR due to gemcitabine treatment can be directly inferred using this model.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0153692</identifier><identifier>PMID: 27088720</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antimetabolites, Antineoplastic - pharmacology ; Biology ; Biology and Life Sciences ; Cancer therapies ; Chemical properties ; Deoxycytidine - analogs & derivatives ; Deoxycytidine - pharmacology ; Gemcitabine ; Growth curves ; Humans ; Hypoxia ; Laboratories ; Mathematical models ; Medical research ; Medicine ; Medicine and Health Sciences ; Metabolism ; Models, Theoretical ; Neoplasms - drug therapy ; Neoplasms - pathology ; Oncology ; Oxygen ; Oxygen - metabolism ; Oxygen consumption ; Oxygen consumption (Metabolism) ; Oxygen Consumption - drug effects ; Physical Sciences ; Physiology ; Prevention ; Radiation therapy ; Research and Analysis Methods ; Spheroids ; Transforming growth factors ; Tumor Cells, Cultured ; Tumors</subject><ispartof>PloS one, 2016-04, Vol.11 (4), p.e0153692</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Grimes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Grimes et al 2016 Grimes et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-3879189f765eca0cd27f00e93f2f88a67a654d6bb1292452a318b7695402f6ec3</citedby><cites>FETCH-LOGICAL-c692t-3879189f765eca0cd27f00e93f2f88a67a654d6bb1292452a318b7695402f6ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4835055/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4835055/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79472,79473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27088720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Burns, Jorge Sans</contributor><creatorcontrib>Grimes, David Robert</creatorcontrib><creatorcontrib>Kannan, Pavitra</creatorcontrib><creatorcontrib>McIntyre, Alan</creatorcontrib><creatorcontrib>Kavanagh, Anthony</creatorcontrib><creatorcontrib>Siddiky, Abul</creatorcontrib><creatorcontrib>Wigfield, Simon</creatorcontrib><creatorcontrib>Harris, Adrian</creatorcontrib><creatorcontrib>Partridge, Mike</creatorcontrib><title>The Role of Oxygen in Avascular Tumor Growth</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The oxygen status of a tumor has significant clinical implications for treatment prognosis, with well-oxygenated subvolumes responding markedly better to radiotherapy than poorly supplied regions. Oxygen is essential for tumor growth, yet estimation of local oxygen distribution can be difficult to ascertain in situ, due to chaotic patterns of vasculature. It is possible to avoid this confounding influence by using avascular tumor models, such as tumor spheroids, a much better approximation of realistic tumor dynamics than monolayers, where oxygen supply can be described by diffusion alone. Similar to in situ tumours, spheroids exhibit an approximately sigmoidal growth curve, often approximated and fitted by logistic and Gompertzian sigmoid functions. These describe the basic rate of growth well, but do not offer an explicitly mechanistic explanation. This work examines the oxygen dynamics of spheroids and demonstrates that this growth can be derived mechanistically with cellular doubling time and oxygen consumption rate (OCR) being key parameters. The model is fitted to growth curves for a range of cell lines and derived values of OCR are validated using clinical measurement. Finally, we illustrate how changes in OCR due to gemcitabine treatment can be directly inferred using this model.</description><subject>Antimetabolites, Antineoplastic - pharmacology</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cancer therapies</subject><subject>Chemical properties</subject><subject>Deoxycytidine - analogs & derivatives</subject><subject>Deoxycytidine - pharmacology</subject><subject>Gemcitabine</subject><subject>Growth curves</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Models, Theoretical</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - pathology</subject><subject>Oncology</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Oxygen consumption</subject><subject>Oxygen consumption (Metabolism)</subject><subject>Oxygen Consumption - drug effects</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Prevention</subject><subject>Radiation therapy</subject><subject>Research and Analysis Methods</subject><subject>Spheroids</subject><subject>Transforming growth factors</subject><subject>Tumor Cells, Cultured</subject><subject>Tumors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAYhYso7of-A9GCIAjOmO-kN8Kw6DqwMLCO3oY0TdoMnWY2adfdf78Zp7tMQUFykZA85-TNm5NlbyCYQ8zh540fQqfa-c53Zg4gxaxAz7JTWGA0Ywjg50frk-wsxg0AFAvGXmYniAMhOAKn2ad1Y_Jr35rc23x1d1-bLnddvrhVUQ-tCvl62PqQXwb_u29eZS-saqN5Pc7n2c9vX9cX32dXq8vlxeJqplMN_QwLXkBRWM6o0QroCnELgCmwRVYIxbhilFSsLCEqEKFIYShKzgpKALLMaHyevTv47lof5fjQKCEXUAAgGEjE8kBUXm3kLritCvfSKyf_bPhQSxV6p1sjBTSCEk6MYCWpKClgWQClqopZWhkkkteX8bah3JpKm64Pqp2YTk8618ja30oiMAWUJoP3o0HwN4OJ_T9KHqlapapcZ30y01sXtVwQiglJ3J6a_4VKozJbp9NXW5f2J4KPE0FienPX12qIUS5_XP8_u_o1ZT8csY1Rbd9E3w69812cguQA6uBjDMY-dQ4CuU_qYzfkPqlyTGqSvT3u-pPoMZr4Aeom4Co</recordid><startdate>20160418</startdate><enddate>20160418</enddate><creator>Grimes, David Robert</creator><creator>Kannan, Pavitra</creator><creator>McIntyre, Alan</creator><creator>Kavanagh, Anthony</creator><creator>Siddiky, Abul</creator><creator>Wigfield, Simon</creator><creator>Harris, Adrian</creator><creator>Partridge, Mike</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160418</creationdate><title>The Role of Oxygen in Avascular Tumor Growth</title><author>Grimes, David Robert ; Kannan, Pavitra ; McIntyre, Alan ; Kavanagh, Anthony ; Siddiky, Abul ; Wigfield, Simon ; Harris, Adrian ; Partridge, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-3879189f765eca0cd27f00e93f2f88a67a654d6bb1292452a318b7695402f6ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antimetabolites, Antineoplastic - pharmacology</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cancer therapies</topic><topic>Chemical properties</topic><topic>Deoxycytidine - analogs & derivatives</topic><topic>Deoxycytidine - pharmacology</topic><topic>Gemcitabine</topic><topic>Growth curves</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Models, Theoretical</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - pathology</topic><topic>Oncology</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Oxygen consumption</topic><topic>Oxygen consumption (Metabolism)</topic><topic>Oxygen Consumption - drug effects</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Prevention</topic><topic>Radiation therapy</topic><topic>Research and Analysis Methods</topic><topic>Spheroids</topic><topic>Transforming growth factors</topic><topic>Tumor Cells, Cultured</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimes, David Robert</creatorcontrib><creatorcontrib>Kannan, Pavitra</creatorcontrib><creatorcontrib>McIntyre, Alan</creatorcontrib><creatorcontrib>Kavanagh, Anthony</creatorcontrib><creatorcontrib>Siddiky, Abul</creatorcontrib><creatorcontrib>Wigfield, Simon</creatorcontrib><creatorcontrib>Harris, Adrian</creatorcontrib><creatorcontrib>Partridge, Mike</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimes, David Robert</au><au>Kannan, Pavitra</au><au>McIntyre, Alan</au><au>Kavanagh, Anthony</au><au>Siddiky, Abul</au><au>Wigfield, Simon</au><au>Harris, Adrian</au><au>Partridge, Mike</au><au>Burns, Jorge Sans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Oxygen in Avascular Tumor Growth</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-04-18</date><risdate>2016</risdate><volume>11</volume><issue>4</issue><spage>e0153692</spage><pages>e0153692-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The oxygen status of a tumor has significant clinical implications for treatment prognosis, with well-oxygenated subvolumes responding markedly better to radiotherapy than poorly supplied regions. Oxygen is essential for tumor growth, yet estimation of local oxygen distribution can be difficult to ascertain in situ, due to chaotic patterns of vasculature. It is possible to avoid this confounding influence by using avascular tumor models, such as tumor spheroids, a much better approximation of realistic tumor dynamics than monolayers, where oxygen supply can be described by diffusion alone. Similar to in situ tumours, spheroids exhibit an approximately sigmoidal growth curve, often approximated and fitted by logistic and Gompertzian sigmoid functions. These describe the basic rate of growth well, but do not offer an explicitly mechanistic explanation. This work examines the oxygen dynamics of spheroids and demonstrates that this growth can be derived mechanistically with cellular doubling time and oxygen consumption rate (OCR) being key parameters. The model is fitted to growth curves for a range of cell lines and derived values of OCR are validated using clinical measurement. Finally, we illustrate how changes in OCR due to gemcitabine treatment can be directly inferred using this model.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27088720</pmid><doi>10.1371/journal.pone.0153692</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-04, Vol.11 (4), p.e0153692 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1781800860 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Antimetabolites, Antineoplastic - pharmacology Biology Biology and Life Sciences Cancer therapies Chemical properties Deoxycytidine - analogs & derivatives Deoxycytidine - pharmacology Gemcitabine Growth curves Humans Hypoxia Laboratories Mathematical models Medical research Medicine Medicine and Health Sciences Metabolism Models, Theoretical Neoplasms - drug therapy Neoplasms - pathology Oncology Oxygen Oxygen - metabolism Oxygen consumption Oxygen consumption (Metabolism) Oxygen Consumption - drug effects Physical Sciences Physiology Prevention Radiation therapy Research and Analysis Methods Spheroids Transforming growth factors Tumor Cells, Cultured Tumors |
title | The Role of Oxygen in Avascular Tumor Growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Oxygen%20in%20Avascular%20Tumor%20Growth&rft.jtitle=PloS%20one&rft.au=Grimes,%20David%20Robert&rft.date=2016-04-18&rft.volume=11&rft.issue=4&rft.spage=e0153692&rft.pages=e0153692-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0153692&rft_dat=%3Cgale_plos_%3EA453448000%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781800860&rft_id=info:pmid/27088720&rft_galeid=A453448000&rft_doaj_id=oai_doaj_org_article_81e85474e86b4d5491b90aadd6f5de28&rfr_iscdi=true |