An Ancient Fingerprint Indicates the Common Ancestry of Rossmann-Fold Enzymes Utilizing Different Ribose-Based Cofactors

Nucleoside-based cofactors are presumed to have preceded proteins. The Rossmann fold is one of the most ancient and functionally diverse protein folds, and most Rossmann enzymes utilize nucleoside-based cofactors. We analyzed an omnipresent Rossmann ribose-binding interaction: a carboxylate side cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2016-03, Vol.14 (3), p.e1002396-e1002396
Hauptverfasser: Laurino, Paola, Tóth-Petróczy, Ágnes, Meana-Pañeda, Rubén, Lin, Wei, Truhlar, Donald G, Tawfik, Dan S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1002396
container_issue 3
container_start_page e1002396
container_title PLoS biology
container_volume 14
creator Laurino, Paola
Tóth-Petróczy, Ágnes
Meana-Pañeda, Rubén
Lin, Wei
Truhlar, Donald G
Tawfik, Dan S
description Nucleoside-based cofactors are presumed to have preceded proteins. The Rossmann fold is one of the most ancient and functionally diverse protein folds, and most Rossmann enzymes utilize nucleoside-based cofactors. We analyzed an omnipresent Rossmann ribose-binding interaction: a carboxylate side chain at the tip of the second β-strand (β2-Asp/Glu). We identified a canonical motif, defined by the β2-topology and unique geometry. The latter relates to the interaction being bidentate (both ribose hydroxyls interacting with the carboxylate oxygens), to the angle between the carboxylate and the ribose, and to the ribose's ring configuration. We found that this canonical motif exhibits hallmarks of divergence rather than convergence. It is uniquely found in Rossmann enzymes that use different cofactors, primarily SAM (S-adenosyl methionine), NAD (nicotinamide adenine dinucleotide), and FAD (flavin adenine dinucleotide). Ribose-carboxylate bidentate interactions in other folds are not only rare but also have a different topology and geometry. We further show that the canonical geometry is not dictated by a physical constraint--geometries found in noncanonical interactions have similar calculated bond energies. Overall, these data indicate the divergence of several major Rossmann-fold enzyme classes, with different cofactors and catalytic chemistries, from a common pre-LUCA (last universal common ancestor) ancestor that possessed the β2-Asp/Glu motif.
doi_str_mv 10.1371/journal.pbio.1002396
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1781391562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476981566</galeid><doaj_id>oai_doaj_org_article_b9ce0a0342e34f4ba3dbe689ed80090b</doaj_id><sourcerecordid>A476981566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c794t-2668d56b56a4397852536cbf1dab3c83736cfb9c9807fbf09670cbacab31e7eb3</originalsourceid><addsrcrecordid>eNqVk99v0zAQxyMEYmPwHyCIxAs8pNhxEtsvSKWsUGliUmG8WrZjd64Su9gpWvfXc127aUWTAEVW_ONz3_Pd-bLsJUYjTCh-vwzr6GU3WikXRhihkvDmUXaM66ouKGP143vzo-xZSktgSl6yp9lR2XDCeFkfZ1djn4-9dsYP-dT5hYmr6GA-863TcjApHy5NPgl9H25Ak4a4yYPN5yGlXnpfTEPX5qf-etMDfDG4zl2DTv7JWWviVnbuVEim-CiTaUHJSj2EmJ5nT6zsknmx_59kF9PT75Mvxdn559lkfFZoyquhKJuGtXWj6kZWhFNWlzVptLK4lYpoRiisrOKaM0Stsog3FGklNZxiQ40iJ9nrne6qC0nsk5YEpgwTjuumBGK2I9oglwLC72XciCCduNkIcSFkHJzujABHBklEqtKQylZKklaZhnHTMoQ42nr7sPe2Vr1pNcQfZXcgenji3aVYhF-iopTCAIG3e4EYfq4h26J3SZuuk96ENdybQRFRVWL2d5RSxGjJKAH0zR_ow4nYUwsJsTpvA1xRb0XFuKINZ0A1QI0eoOBrTe908MY62D8weHdgAMxgroaFXKckZt_m_8F-_Xf2_MchW-1YHeHdRmPvSoKR2LbTbULEtp3Evp3A7NX9ct4Z3fYP-Q1GERs8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781391562</pqid></control><display><type>article</type><title>An Ancient Fingerprint Indicates the Common Ancestry of Rossmann-Fold Enzymes Utilizing Different Ribose-Based Cofactors</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Laurino, Paola ; Tóth-Petróczy, Ágnes ; Meana-Pañeda, Rubén ; Lin, Wei ; Truhlar, Donald G ; Tawfik, Dan S</creator><contributor>Orengo, Christine A.</contributor><creatorcontrib>Laurino, Paola ; Tóth-Petróczy, Ágnes ; Meana-Pañeda, Rubén ; Lin, Wei ; Truhlar, Donald G ; Tawfik, Dan S ; Orengo, Christine A.</creatorcontrib><description>Nucleoside-based cofactors are presumed to have preceded proteins. The Rossmann fold is one of the most ancient and functionally diverse protein folds, and most Rossmann enzymes utilize nucleoside-based cofactors. We analyzed an omnipresent Rossmann ribose-binding interaction: a carboxylate side chain at the tip of the second β-strand (β2-Asp/Glu). We identified a canonical motif, defined by the β2-topology and unique geometry. The latter relates to the interaction being bidentate (both ribose hydroxyls interacting with the carboxylate oxygens), to the angle between the carboxylate and the ribose, and to the ribose's ring configuration. We found that this canonical motif exhibits hallmarks of divergence rather than convergence. It is uniquely found in Rossmann enzymes that use different cofactors, primarily SAM (S-adenosyl methionine), NAD (nicotinamide adenine dinucleotide), and FAD (flavin adenine dinucleotide). Ribose-carboxylate bidentate interactions in other folds are not only rare but also have a different topology and geometry. We further show that the canonical geometry is not dictated by a physical constraint--geometries found in noncanonical interactions have similar calculated bond energies. Overall, these data indicate the divergence of several major Rossmann-fold enzyme classes, with different cofactors and catalytic chemistries, from a common pre-LUCA (last universal common ancestor) ancestor that possessed the β2-Asp/Glu motif.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1002396</identifier><identifier>PMID: 26938925</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine ; Biology and Life Sciences ; Coenzymes ; Dehydrogenases ; Enzyme kinetics ; Enzymes ; Enzymes - genetics ; Evolution ; Evolution, Molecular ; Genealogy ; Geometry ; Observations ; Physical Sciences ; Proteins ; Research and Analysis Methods ; Ribose - metabolism ; Structure-Activity Relationship</subject><ispartof>PLoS biology, 2016-03, Vol.14 (3), p.e1002396-e1002396</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Laurino P, Tóth-Petróczy Á, Meana-Pañeda R, Lin W, Truhlar DG, Tawfik DS (2016) An Ancient Fingerprint Indicates the Common Ancestry of Rossmann-Fold Enzymes Utilizing Different Ribose-Based Cofactors. PLoS Biol 14(3): e1002396. doi:10.1371/journal.pbio.1002396</rights><rights>2016 Laurino et al 2016 Laurino et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Laurino P, Tóth-Petróczy Á, Meana-Pañeda R, Lin W, Truhlar DG, Tawfik DS (2016) An Ancient Fingerprint Indicates the Common Ancestry of Rossmann-Fold Enzymes Utilizing Different Ribose-Based Cofactors. PLoS Biol 14(3): e1002396. doi:10.1371/journal.pbio.1002396</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c794t-2668d56b56a4397852536cbf1dab3c83736cfb9c9807fbf09670cbacab31e7eb3</citedby><cites>FETCH-LOGICAL-c794t-2668d56b56a4397852536cbf1dab3c83736cfb9c9807fbf09670cbacab31e7eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777477/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777477/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26938925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Orengo, Christine A.</contributor><creatorcontrib>Laurino, Paola</creatorcontrib><creatorcontrib>Tóth-Petróczy, Ágnes</creatorcontrib><creatorcontrib>Meana-Pañeda, Rubén</creatorcontrib><creatorcontrib>Lin, Wei</creatorcontrib><creatorcontrib>Truhlar, Donald G</creatorcontrib><creatorcontrib>Tawfik, Dan S</creatorcontrib><title>An Ancient Fingerprint Indicates the Common Ancestry of Rossmann-Fold Enzymes Utilizing Different Ribose-Based Cofactors</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Nucleoside-based cofactors are presumed to have preceded proteins. The Rossmann fold is one of the most ancient and functionally diverse protein folds, and most Rossmann enzymes utilize nucleoside-based cofactors. We analyzed an omnipresent Rossmann ribose-binding interaction: a carboxylate side chain at the tip of the second β-strand (β2-Asp/Glu). We identified a canonical motif, defined by the β2-topology and unique geometry. The latter relates to the interaction being bidentate (both ribose hydroxyls interacting with the carboxylate oxygens), to the angle between the carboxylate and the ribose, and to the ribose's ring configuration. We found that this canonical motif exhibits hallmarks of divergence rather than convergence. It is uniquely found in Rossmann enzymes that use different cofactors, primarily SAM (S-adenosyl methionine), NAD (nicotinamide adenine dinucleotide), and FAD (flavin adenine dinucleotide). Ribose-carboxylate bidentate interactions in other folds are not only rare but also have a different topology and geometry. We further show that the canonical geometry is not dictated by a physical constraint--geometries found in noncanonical interactions have similar calculated bond energies. Overall, these data indicate the divergence of several major Rossmann-fold enzyme classes, with different cofactors and catalytic chemistries, from a common pre-LUCA (last universal common ancestor) ancestor that possessed the β2-Asp/Glu motif.</description><subject>Adenosine</subject><subject>Biology and Life Sciences</subject><subject>Coenzymes</subject><subject>Dehydrogenases</subject><subject>Enzyme kinetics</subject><subject>Enzymes</subject><subject>Enzymes - genetics</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Genealogy</subject><subject>Geometry</subject><subject>Observations</subject><subject>Physical Sciences</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Ribose - metabolism</subject><subject>Structure-Activity Relationship</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk99v0zAQxyMEYmPwHyCIxAs8pNhxEtsvSKWsUGliUmG8WrZjd64Su9gpWvfXc127aUWTAEVW_ONz3_Pd-bLsJUYjTCh-vwzr6GU3WikXRhihkvDmUXaM66ouKGP143vzo-xZSktgSl6yp9lR2XDCeFkfZ1djn4-9dsYP-dT5hYmr6GA-863TcjApHy5NPgl9H25Ak4a4yYPN5yGlXnpfTEPX5qf-etMDfDG4zl2DTv7JWWviVnbuVEim-CiTaUHJSj2EmJ5nT6zsknmx_59kF9PT75Mvxdn559lkfFZoyquhKJuGtXWj6kZWhFNWlzVptLK4lYpoRiisrOKaM0Stsog3FGklNZxiQ40iJ9nrne6qC0nsk5YEpgwTjuumBGK2I9oglwLC72XciCCduNkIcSFkHJzujABHBklEqtKQylZKklaZhnHTMoQ42nr7sPe2Vr1pNcQfZXcgenji3aVYhF-iopTCAIG3e4EYfq4h26J3SZuuk96ENdybQRFRVWL2d5RSxGjJKAH0zR_ow4nYUwsJsTpvA1xRb0XFuKINZ0A1QI0eoOBrTe908MY62D8weHdgAMxgroaFXKckZt_m_8F-_Xf2_MchW-1YHeHdRmPvSoKR2LbTbULEtp3Evp3A7NX9ct4Z3fYP-Q1GERs8</recordid><startdate>20160303</startdate><enddate>20160303</enddate><creator>Laurino, Paola</creator><creator>Tóth-Petróczy, Ágnes</creator><creator>Meana-Pañeda, Rubén</creator><creator>Lin, Wei</creator><creator>Truhlar, Donald G</creator><creator>Tawfik, Dan S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20160303</creationdate><title>An Ancient Fingerprint Indicates the Common Ancestry of Rossmann-Fold Enzymes Utilizing Different Ribose-Based Cofactors</title><author>Laurino, Paola ; Tóth-Petróczy, Ágnes ; Meana-Pañeda, Rubén ; Lin, Wei ; Truhlar, Donald G ; Tawfik, Dan S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c794t-2668d56b56a4397852536cbf1dab3c83736cfb9c9807fbf09670cbacab31e7eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine</topic><topic>Biology and Life Sciences</topic><topic>Coenzymes</topic><topic>Dehydrogenases</topic><topic>Enzyme kinetics</topic><topic>Enzymes</topic><topic>Enzymes - genetics</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Genealogy</topic><topic>Geometry</topic><topic>Observations</topic><topic>Physical Sciences</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Ribose - metabolism</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laurino, Paola</creatorcontrib><creatorcontrib>Tóth-Petróczy, Ágnes</creatorcontrib><creatorcontrib>Meana-Pañeda, Rubén</creatorcontrib><creatorcontrib>Lin, Wei</creatorcontrib><creatorcontrib>Truhlar, Donald G</creatorcontrib><creatorcontrib>Tawfik, Dan S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laurino, Paola</au><au>Tóth-Petróczy, Ágnes</au><au>Meana-Pañeda, Rubén</au><au>Lin, Wei</au><au>Truhlar, Donald G</au><au>Tawfik, Dan S</au><au>Orengo, Christine A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Ancient Fingerprint Indicates the Common Ancestry of Rossmann-Fold Enzymes Utilizing Different Ribose-Based Cofactors</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2016-03-03</date><risdate>2016</risdate><volume>14</volume><issue>3</issue><spage>e1002396</spage><epage>e1002396</epage><pages>e1002396-e1002396</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Nucleoside-based cofactors are presumed to have preceded proteins. The Rossmann fold is one of the most ancient and functionally diverse protein folds, and most Rossmann enzymes utilize nucleoside-based cofactors. We analyzed an omnipresent Rossmann ribose-binding interaction: a carboxylate side chain at the tip of the second β-strand (β2-Asp/Glu). We identified a canonical motif, defined by the β2-topology and unique geometry. The latter relates to the interaction being bidentate (both ribose hydroxyls interacting with the carboxylate oxygens), to the angle between the carboxylate and the ribose, and to the ribose's ring configuration. We found that this canonical motif exhibits hallmarks of divergence rather than convergence. It is uniquely found in Rossmann enzymes that use different cofactors, primarily SAM (S-adenosyl methionine), NAD (nicotinamide adenine dinucleotide), and FAD (flavin adenine dinucleotide). Ribose-carboxylate bidentate interactions in other folds are not only rare but also have a different topology and geometry. We further show that the canonical geometry is not dictated by a physical constraint--geometries found in noncanonical interactions have similar calculated bond energies. Overall, these data indicate the divergence of several major Rossmann-fold enzyme classes, with different cofactors and catalytic chemistries, from a common pre-LUCA (last universal common ancestor) ancestor that possessed the β2-Asp/Glu motif.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26938925</pmid><doi>10.1371/journal.pbio.1002396</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2016-03, Vol.14 (3), p.e1002396-e1002396
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_1781391562
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adenosine
Biology and Life Sciences
Coenzymes
Dehydrogenases
Enzyme kinetics
Enzymes
Enzymes - genetics
Evolution
Evolution, Molecular
Genealogy
Geometry
Observations
Physical Sciences
Proteins
Research and Analysis Methods
Ribose - metabolism
Structure-Activity Relationship
title An Ancient Fingerprint Indicates the Common Ancestry of Rossmann-Fold Enzymes Utilizing Different Ribose-Based Cofactors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Ancient%20Fingerprint%20Indicates%20the%20Common%20Ancestry%20of%20Rossmann-Fold%20Enzymes%20Utilizing%20Different%20Ribose-Based%20Cofactors&rft.jtitle=PLoS%20biology&rft.au=Laurino,%20Paola&rft.date=2016-03-03&rft.volume=14&rft.issue=3&rft.spage=e1002396&rft.epage=e1002396&rft.pages=e1002396-e1002396&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1002396&rft_dat=%3Cgale_plos_%3EA476981566%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781391562&rft_id=info:pmid/26938925&rft_galeid=A476981566&rft_doaj_id=oai_doaj_org_article_b9ce0a0342e34f4ba3dbe689ed80090b&rfr_iscdi=true