An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway
In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2016-03, Vol.14 (3), p.e1002364 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | e1002364 |
container_title | PLoS biology |
container_volume | 14 |
creator | Robertson, Kevin A Hsieh, Wei Yuan Forster, Thorsten Blanc, Mathieu Lu, Hongjin Crick, Peter J Yutuc, Eylan Watterson, Steven Martin, Kimberly Griffiths, Samantha J Enright, Anton J Yamamoto, Mami Pradeepa, Madapura M Lennox, Kimberly A Behlke, Mark A Talbot, Simon Haas, Jürgen Dölken, Lars Griffiths, William J Wang, Yuqin Angulo, Ana Ghazal, Peter |
description | In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway. |
doi_str_mv | 10.1371/journal.pbio.1002364 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1781391537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476981567</galeid><doaj_id>oai_doaj_org_article_2a7e4b86c96d49edbfa01de93c137949</doaj_id><sourcerecordid>A476981567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c728t-d7147c98942bac3c54973c9f3f23db05bef8e516ff590ef2f63753d46592e43d3</originalsourceid><addsrcrecordid>eNqVk11vFCEUhidGY2v1Hxgl8UYvdh0GGIabJmv96Cb9Slu9JQxzmKWZHSowq_0X_mQZd9t0TS80XEDged8D53Cy7CXOp5hw_P7KDb5X3fS6tm6K87wgJX2U7WJG2YRXFXt8b72TPQvhKjGFKKqn2U5RClJxXu1mv2Y9mvcRvAHvenQO7dCpCA06ttq785MZOvNuZRsI6IN3qkEH0HWTpPC2D1ajWR_tynrVoflyOfQ23qC48G5oF-h46KJd2IgOXYiTj9aDHo0vlW8h2r5FziQW0EWK7jp0puLih7p5nj0xqgvwYjPvZV8_f7o8OJwcnX6ZH8yOJpoXVZw0HFOuRSVoUStNNKOCEy0MMQVp6pzVYCpguDSGiRxMYUrCGWloyUQBlDRkL3u99r3uXJCbZAaJeYWJwIzwRMzXROPUlbz2dqn8jXTKyj8bzrdS-Wh1B7JQHGhdlVqUDRXQ1EbluAFBdCqVoCJ57W-iDfUSGg0pgarbMt0-6e1Ctm4lKeecFSwZvN0YePd9gBDl0gadaqF6cMN4b0GpEDQf7_3mL_Th122oVqUH2N64FFePpnJGeSkqzMqRmj5ApdHA0mrXg7Fpf0vwbkuQmAg_Y6uGEOT84vw_2JN_Z0-_bbN0zaYfHIIHc5dnnMuxd24TIsfekZveSbJX92t0J7ptFvIb_jYV_g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781391537</pqid></control><display><type>article</type><title>An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Robertson, Kevin A ; Hsieh, Wei Yuan ; Forster, Thorsten ; Blanc, Mathieu ; Lu, Hongjin ; Crick, Peter J ; Yutuc, Eylan ; Watterson, Steven ; Martin, Kimberly ; Griffiths, Samantha J ; Enright, Anton J ; Yamamoto, Mami ; Pradeepa, Madapura M ; Lennox, Kimberly A ; Behlke, Mark A ; Talbot, Simon ; Haas, Jürgen ; Dölken, Lars ; Griffiths, William J ; Wang, Yuqin ; Angulo, Ana ; Ghazal, Peter</creator><contributor>Ploegh, Hidde L</contributor><creatorcontrib>Robertson, Kevin A ; Hsieh, Wei Yuan ; Forster, Thorsten ; Blanc, Mathieu ; Lu, Hongjin ; Crick, Peter J ; Yutuc, Eylan ; Watterson, Steven ; Martin, Kimberly ; Griffiths, Samantha J ; Enright, Anton J ; Yamamoto, Mami ; Pradeepa, Madapura M ; Lennox, Kimberly A ; Behlke, Mark A ; Talbot, Simon ; Haas, Jürgen ; Dölken, Lars ; Griffiths, William J ; Wang, Yuqin ; Angulo, Ana ; Ghazal, Peter ; Ploegh, Hidde L</creatorcontrib><description>In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1002364</identifier><identifier>PMID: 26938778</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Binding sites ; Biology and life sciences ; Biosynthesis ; Cholesterol ; Cytomegalovirus ; Experiments ; Gene expression ; Infections ; Influenza ; Interferon ; Interferon Regulatory Factor-1 - metabolism ; Interferons - physiology ; Kinases ; Mammals ; Metabolism ; Metabolites ; Methods ; Mice, Inbred C57BL ; MicroRNA ; MicroRNAs ; MicroRNAs - metabolism ; Physiological aspects ; RNA sequencing ; Sterols ; Sterols - biosynthesis ; Viral infections ; Virus Diseases - immunology ; Viruses</subject><ispartof>PLoS biology, 2016-03, Vol.14 (3), p.e1002364</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Robertson KA, Hsieh WY, Forster T, Blanc M, Lu H, Crick PJ, et al. (2016) An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway. PLoS Biol 14(3): e1002364. doi:10.1371/journal.pbio.1002364</rights><rights>2016 Robertson et al 2016 Robertson et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Robertson KA, Hsieh WY, Forster T, Blanc M, Lu H, Crick PJ, et al. (2016) An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway. PLoS Biol 14(3): e1002364. doi:10.1371/journal.pbio.1002364</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c728t-d7147c98942bac3c54973c9f3f23db05bef8e516ff590ef2f63753d46592e43d3</citedby><cites>FETCH-LOGICAL-c728t-d7147c98942bac3c54973c9f3f23db05bef8e516ff590ef2f63753d46592e43d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777525/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777525/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26938778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ploegh, Hidde L</contributor><creatorcontrib>Robertson, Kevin A</creatorcontrib><creatorcontrib>Hsieh, Wei Yuan</creatorcontrib><creatorcontrib>Forster, Thorsten</creatorcontrib><creatorcontrib>Blanc, Mathieu</creatorcontrib><creatorcontrib>Lu, Hongjin</creatorcontrib><creatorcontrib>Crick, Peter J</creatorcontrib><creatorcontrib>Yutuc, Eylan</creatorcontrib><creatorcontrib>Watterson, Steven</creatorcontrib><creatorcontrib>Martin, Kimberly</creatorcontrib><creatorcontrib>Griffiths, Samantha J</creatorcontrib><creatorcontrib>Enright, Anton J</creatorcontrib><creatorcontrib>Yamamoto, Mami</creatorcontrib><creatorcontrib>Pradeepa, Madapura M</creatorcontrib><creatorcontrib>Lennox, Kimberly A</creatorcontrib><creatorcontrib>Behlke, Mark A</creatorcontrib><creatorcontrib>Talbot, Simon</creatorcontrib><creatorcontrib>Haas, Jürgen</creatorcontrib><creatorcontrib>Dölken, Lars</creatorcontrib><creatorcontrib>Griffiths, William J</creatorcontrib><creatorcontrib>Wang, Yuqin</creatorcontrib><creatorcontrib>Angulo, Ana</creatorcontrib><creatorcontrib>Ghazal, Peter</creatorcontrib><title>An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.</description><subject>Animals</subject><subject>Binding sites</subject><subject>Biology and life sciences</subject><subject>Biosynthesis</subject><subject>Cholesterol</subject><subject>Cytomegalovirus</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Infections</subject><subject>Influenza</subject><subject>Interferon</subject><subject>Interferon Regulatory Factor-1 - metabolism</subject><subject>Interferons - physiology</subject><subject>Kinases</subject><subject>Mammals</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methods</subject><subject>Mice, Inbred C57BL</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - metabolism</subject><subject>Physiological aspects</subject><subject>RNA sequencing</subject><subject>Sterols</subject><subject>Sterols - biosynthesis</subject><subject>Viral infections</subject><subject>Virus Diseases - immunology</subject><subject>Viruses</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11vFCEUhidGY2v1Hxgl8UYvdh0GGIabJmv96Cb9Slu9JQxzmKWZHSowq_0X_mQZd9t0TS80XEDged8D53Cy7CXOp5hw_P7KDb5X3fS6tm6K87wgJX2U7WJG2YRXFXt8b72TPQvhKjGFKKqn2U5RClJxXu1mv2Y9mvcRvAHvenQO7dCpCA06ttq785MZOvNuZRsI6IN3qkEH0HWTpPC2D1ajWR_tynrVoflyOfQ23qC48G5oF-h46KJd2IgOXYiTj9aDHo0vlW8h2r5FziQW0EWK7jp0puLih7p5nj0xqgvwYjPvZV8_f7o8OJwcnX6ZH8yOJpoXVZw0HFOuRSVoUStNNKOCEy0MMQVp6pzVYCpguDSGiRxMYUrCGWloyUQBlDRkL3u99r3uXJCbZAaJeYWJwIzwRMzXROPUlbz2dqn8jXTKyj8bzrdS-Wh1B7JQHGhdlVqUDRXQ1EbluAFBdCqVoCJ57W-iDfUSGg0pgarbMt0-6e1Ctm4lKeecFSwZvN0YePd9gBDl0gadaqF6cMN4b0GpEDQf7_3mL_Th122oVqUH2N64FFePpnJGeSkqzMqRmj5ApdHA0mrXg7Fpf0vwbkuQmAg_Y6uGEOT84vw_2JN_Z0-_bbN0zaYfHIIHc5dnnMuxd24TIsfekZveSbJX92t0J7ptFvIb_jYV_g</recordid><startdate>20160303</startdate><enddate>20160303</enddate><creator>Robertson, Kevin A</creator><creator>Hsieh, Wei Yuan</creator><creator>Forster, Thorsten</creator><creator>Blanc, Mathieu</creator><creator>Lu, Hongjin</creator><creator>Crick, Peter J</creator><creator>Yutuc, Eylan</creator><creator>Watterson, Steven</creator><creator>Martin, Kimberly</creator><creator>Griffiths, Samantha J</creator><creator>Enright, Anton J</creator><creator>Yamamoto, Mami</creator><creator>Pradeepa, Madapura M</creator><creator>Lennox, Kimberly A</creator><creator>Behlke, Mark A</creator><creator>Talbot, Simon</creator><creator>Haas, Jürgen</creator><creator>Dölken, Lars</creator><creator>Griffiths, William J</creator><creator>Wang, Yuqin</creator><creator>Angulo, Ana</creator><creator>Ghazal, Peter</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7U9</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20160303</creationdate><title>An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway</title><author>Robertson, Kevin A ; Hsieh, Wei Yuan ; Forster, Thorsten ; Blanc, Mathieu ; Lu, Hongjin ; Crick, Peter J ; Yutuc, Eylan ; Watterson, Steven ; Martin, Kimberly ; Griffiths, Samantha J ; Enright, Anton J ; Yamamoto, Mami ; Pradeepa, Madapura M ; Lennox, Kimberly A ; Behlke, Mark A ; Talbot, Simon ; Haas, Jürgen ; Dölken, Lars ; Griffiths, William J ; Wang, Yuqin ; Angulo, Ana ; Ghazal, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c728t-d7147c98942bac3c54973c9f3f23db05bef8e516ff590ef2f63753d46592e43d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Binding sites</topic><topic>Biology and life sciences</topic><topic>Biosynthesis</topic><topic>Cholesterol</topic><topic>Cytomegalovirus</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Infections</topic><topic>Influenza</topic><topic>Interferon</topic><topic>Interferon Regulatory Factor-1 - metabolism</topic><topic>Interferons - physiology</topic><topic>Kinases</topic><topic>Mammals</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methods</topic><topic>Mice, Inbred C57BL</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - metabolism</topic><topic>Physiological aspects</topic><topic>RNA sequencing</topic><topic>Sterols</topic><topic>Sterols - biosynthesis</topic><topic>Viral infections</topic><topic>Virus Diseases - immunology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robertson, Kevin A</creatorcontrib><creatorcontrib>Hsieh, Wei Yuan</creatorcontrib><creatorcontrib>Forster, Thorsten</creatorcontrib><creatorcontrib>Blanc, Mathieu</creatorcontrib><creatorcontrib>Lu, Hongjin</creatorcontrib><creatorcontrib>Crick, Peter J</creatorcontrib><creatorcontrib>Yutuc, Eylan</creatorcontrib><creatorcontrib>Watterson, Steven</creatorcontrib><creatorcontrib>Martin, Kimberly</creatorcontrib><creatorcontrib>Griffiths, Samantha J</creatorcontrib><creatorcontrib>Enright, Anton J</creatorcontrib><creatorcontrib>Yamamoto, Mami</creatorcontrib><creatorcontrib>Pradeepa, Madapura M</creatorcontrib><creatorcontrib>Lennox, Kimberly A</creatorcontrib><creatorcontrib>Behlke, Mark A</creatorcontrib><creatorcontrib>Talbot, Simon</creatorcontrib><creatorcontrib>Haas, Jürgen</creatorcontrib><creatorcontrib>Dölken, Lars</creatorcontrib><creatorcontrib>Griffiths, William J</creatorcontrib><creatorcontrib>Wang, Yuqin</creatorcontrib><creatorcontrib>Angulo, Ana</creatorcontrib><creatorcontrib>Ghazal, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robertson, Kevin A</au><au>Hsieh, Wei Yuan</au><au>Forster, Thorsten</au><au>Blanc, Mathieu</au><au>Lu, Hongjin</au><au>Crick, Peter J</au><au>Yutuc, Eylan</au><au>Watterson, Steven</au><au>Martin, Kimberly</au><au>Griffiths, Samantha J</au><au>Enright, Anton J</au><au>Yamamoto, Mami</au><au>Pradeepa, Madapura M</au><au>Lennox, Kimberly A</au><au>Behlke, Mark A</au><au>Talbot, Simon</au><au>Haas, Jürgen</au><au>Dölken, Lars</au><au>Griffiths, William J</au><au>Wang, Yuqin</au><au>Angulo, Ana</au><au>Ghazal, Peter</au><au>Ploegh, Hidde L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2016-03-03</date><risdate>2016</risdate><volume>14</volume><issue>3</issue><spage>e1002364</spage><pages>e1002364-</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26938778</pmid><doi>10.1371/journal.pbio.1002364</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2016-03, Vol.14 (3), p.e1002364 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_1781391537 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Binding sites Biology and life sciences Biosynthesis Cholesterol Cytomegalovirus Experiments Gene expression Infections Influenza Interferon Interferon Regulatory Factor-1 - metabolism Interferons - physiology Kinases Mammals Metabolism Metabolites Methods Mice, Inbred C57BL MicroRNA MicroRNAs MicroRNAs - metabolism Physiological aspects RNA sequencing Sterols Sterols - biosynthesis Viral infections Virus Diseases - immunology Viruses |
title | An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A43%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Interferon%20Regulated%20MicroRNA%20Provides%20Broad%20Cell-Intrinsic%20Antiviral%20Immunity%20through%20Multihit%20Host-Directed%20Targeting%20of%20the%20Sterol%20Pathway&rft.jtitle=PLoS%20biology&rft.au=Robertson,%20Kevin%20A&rft.date=2016-03-03&rft.volume=14&rft.issue=3&rft.spage=e1002364&rft.pages=e1002364-&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1002364&rft_dat=%3Cgale_plos_%3EA476981567%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781391537&rft_id=info:pmid/26938778&rft_galeid=A476981567&rft_doaj_id=oai_doaj_org_article_2a7e4b86c96d49edbfa01de93c137949&rfr_iscdi=true |