Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR

Hyperammonemia is frequently seen in tumor microenvironments as well as in liver diseases where it can lead to severe brain damage or death. Ammonia induces autophagy, a mechanism that tumor cells may use to protect themselves from external stresses. However, how cells sense ammonia has been unclear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-04, Vol.11 (4), p.e0153526-e0153526
Hauptverfasser: Li, Zhiyuan, Ji, Xinmiao, Wang, Wenchao, Liu, Juanjuan, Liang, Xiaofei, Wu, Hong, Liu, Jing, Eggert, Ulrike S, Liu, Qingsong, Zhang, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0153526
container_issue 4
container_start_page e0153526
container_title PloS one
container_volume 11
creator Li, Zhiyuan
Ji, Xinmiao
Wang, Wenchao
Liu, Juanjuan
Liang, Xiaofei
Wu, Hong
Liu, Jing
Eggert, Ulrike S
Liu, Qingsong
Zhang, Xin
description Hyperammonemia is frequently seen in tumor microenvironments as well as in liver diseases where it can lead to severe brain damage or death. Ammonia induces autophagy, a mechanism that tumor cells may use to protect themselves from external stresses. However, how cells sense ammonia has been unclear. Here we show that culture medium alone containing Glutamine can generate milimolar of ammonia at 37 degrees in the absence of cells. In addition, we reveal that ammonia acts through the G protein-coupled receptor DRD3 (Dopamine receptor D3) to induce autophagy. At the same time, ammonia induces DRD3 degradation, which involves PIK3C3/VPS34-dependent pathways. Ammonia inhibits MTOR (mechanistic target of Rapamycin) activity and localization in cells, which is mediated by DRD3. Therefore, ammonia has dual roles in autophagy: one to induce autophagy through DRD3 and MTOR, the other to increase autophagosomal pH to inhibit autophagic flux. Our study not only adds a new sensing and output pathway for DRD3 that bridges ammonia sensing and autophagy induction, but also provides potential mechanisms for the clinical consequences of hyperammonemia in brain damage, neurodegenerative diseases and tumors.
doi_str_mv 10.1371/journal.pone.0153526
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1781154744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A453448113</galeid><doaj_id>oai_doaj_org_article_002465872d834335b593345708016ea7</doaj_id><sourcerecordid>A453448113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-ae9bceb22ef893a4c4cadea231a15c7e1327e81b6aaf5a436eba255d58ee18d13</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqXwDxBEQkJw2CX-ip0LaNUWWKlopaVwtSbOJPEqiUOcIPrvyXbTaoN64GRr_Mw7H36D4CWJloRJ8mHnhq6Batm6BpcREUzQ-FFwShJGFzGN2OOj-0nwzPtdFAmm4vhpcEJlJGUsxGnwaVXXrrEQrptsMOjD1dC7toTiJuzLzg1FGV64FmrbYLhFg23vuvCChdBk4bfrzfZ58CSHyuOL6TwLfny-vD7_urjafFmfr64WRgrVLwCT1GBKKeYqYcANN5AhUEaACCORMCpRkTQGyAVwFmMKVIhMKESiMsLOgtcH3bZyXk-ze02kIkRwyflIrA9E5mCn287W0N1oB1bfBlxXaOh6ayrUUUR5LJSkmWKcMZGKhDEuZKQiEiPIUevjVG1Ia8wMNn0H1Ux0_tLYUhfut-aKEUX2zbybBDr3a0Df69p6g1UFDbrh0LdgSZzQEX3zD_rwdBNVwDiAbXI31jV7Ub3ignE-kmyklg9QsN91bc1olNyO8VnC-1nCyPT4py9g8F6vv2__n938nLNvj9gSoepL76qht67xc5AfQNM57zvM75dMIr33-d029N7nevL5mPbq-IPuk-6Mzf4CTuX1Jw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781154744</pqid></control><display><type>article</type><title>Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Zhiyuan ; Ji, Xinmiao ; Wang, Wenchao ; Liu, Juanjuan ; Liang, Xiaofei ; Wu, Hong ; Liu, Jing ; Eggert, Ulrike S ; Liu, Qingsong ; Zhang, Xin</creator><contributor>Kang, Rui</contributor><creatorcontrib>Li, Zhiyuan ; Ji, Xinmiao ; Wang, Wenchao ; Liu, Juanjuan ; Liang, Xiaofei ; Wu, Hong ; Liu, Jing ; Eggert, Ulrike S ; Liu, Qingsong ; Zhang, Xin ; Kang, Rui</creatorcontrib><description>Hyperammonemia is frequently seen in tumor microenvironments as well as in liver diseases where it can lead to severe brain damage or death. Ammonia induces autophagy, a mechanism that tumor cells may use to protect themselves from external stresses. However, how cells sense ammonia has been unclear. Here we show that culture medium alone containing Glutamine can generate milimolar of ammonia at 37 degrees in the absence of cells. In addition, we reveal that ammonia acts through the G protein-coupled receptor DRD3 (Dopamine receptor D3) to induce autophagy. At the same time, ammonia induces DRD3 degradation, which involves PIK3C3/VPS34-dependent pathways. Ammonia inhibits MTOR (mechanistic target of Rapamycin) activity and localization in cells, which is mediated by DRD3. Therefore, ammonia has dual roles in autophagy: one to induce autophagy through DRD3 and MTOR, the other to increase autophagosomal pH to inhibit autophagic flux. Our study not only adds a new sensing and output pathway for DRD3 that bridges ammonia sensing and autophagy induction, but also provides potential mechanisms for the clinical consequences of hyperammonemia in brain damage, neurodegenerative diseases and tumors.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0153526</identifier><identifier>PMID: 27077655</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Ammonia ; Ammonia - metabolism ; Animals ; Autophagy ; Biology and Life Sciences ; Brain damage ; Brain injury ; Cancer ; Cell culture ; Cell death ; Cell Line ; Cell Line, Tumor ; CHO Cells ; Class III Phosphatidylinositol 3-Kinases - metabolism ; Cricetulus ; Development and progression ; Dopamine ; Dopamine D3 receptors ; Dopamine receptors ; Genetic aspects ; Glutamine ; Humans ; Hyperammonemia ; Immunoglobulins ; Kinases ; Laboratories ; Ligands ; Liver ; Liver diseases ; Localization ; Membrane proteins ; Microenvironments ; Neuroblastoma ; Neurodegenerative diseases ; Neurological diseases ; pH effects ; Phagocytosis ; Phosphatidylinositol 3-Kinases - metabolism ; Physical Sciences ; Physiological aspects ; Proteins ; Proteolysis ; Rapamycin ; Receptors, Dopamine D3 - metabolism ; Research and analysis methods ; Risk factors ; Rodents ; Science ; Signal Transduction ; Studies ; TOR protein ; TOR Serine-Threonine Kinases - metabolism ; Tumor cells ; Tumors</subject><ispartof>PloS one, 2016-04, Vol.11 (4), p.e0153526-e0153526</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Li et al 2016 Li et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-ae9bceb22ef893a4c4cadea231a15c7e1327e81b6aaf5a436eba255d58ee18d13</citedby><cites>FETCH-LOGICAL-c758t-ae9bceb22ef893a4c4cadea231a15c7e1327e81b6aaf5a436eba255d58ee18d13</cites><orcidid>0000-0002-3499-2189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831814/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831814/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27077655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kang, Rui</contributor><creatorcontrib>Li, Zhiyuan</creatorcontrib><creatorcontrib>Ji, Xinmiao</creatorcontrib><creatorcontrib>Wang, Wenchao</creatorcontrib><creatorcontrib>Liu, Juanjuan</creatorcontrib><creatorcontrib>Liang, Xiaofei</creatorcontrib><creatorcontrib>Wu, Hong</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Eggert, Ulrike S</creatorcontrib><creatorcontrib>Liu, Qingsong</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><title>Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Hyperammonemia is frequently seen in tumor microenvironments as well as in liver diseases where it can lead to severe brain damage or death. Ammonia induces autophagy, a mechanism that tumor cells may use to protect themselves from external stresses. However, how cells sense ammonia has been unclear. Here we show that culture medium alone containing Glutamine can generate milimolar of ammonia at 37 degrees in the absence of cells. In addition, we reveal that ammonia acts through the G protein-coupled receptor DRD3 (Dopamine receptor D3) to induce autophagy. At the same time, ammonia induces DRD3 degradation, which involves PIK3C3/VPS34-dependent pathways. Ammonia inhibits MTOR (mechanistic target of Rapamycin) activity and localization in cells, which is mediated by DRD3. Therefore, ammonia has dual roles in autophagy: one to induce autophagy through DRD3 and MTOR, the other to increase autophagosomal pH to inhibit autophagic flux. Our study not only adds a new sensing and output pathway for DRD3 that bridges ammonia sensing and autophagy induction, but also provides potential mechanisms for the clinical consequences of hyperammonemia in brain damage, neurodegenerative diseases and tumors.</description><subject>Ammonia</subject><subject>Ammonia - metabolism</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Biology and Life Sciences</subject><subject>Brain damage</subject><subject>Brain injury</subject><subject>Cancer</subject><subject>Cell culture</subject><subject>Cell death</subject><subject>Cell Line</subject><subject>Cell Line, Tumor</subject><subject>CHO Cells</subject><subject>Class III Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Cricetulus</subject><subject>Development and progression</subject><subject>Dopamine</subject><subject>Dopamine D3 receptors</subject><subject>Dopamine receptors</subject><subject>Genetic aspects</subject><subject>Glutamine</subject><subject>Humans</subject><subject>Hyperammonemia</subject><subject>Immunoglobulins</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Ligands</subject><subject>Liver</subject><subject>Liver diseases</subject><subject>Localization</subject><subject>Membrane proteins</subject><subject>Microenvironments</subject><subject>Neuroblastoma</subject><subject>Neurodegenerative diseases</subject><subject>Neurological diseases</subject><subject>pH effects</subject><subject>Phagocytosis</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Rapamycin</subject><subject>Receptors, Dopamine D3 - metabolism</subject><subject>Research and analysis methods</subject><subject>Risk factors</subject><subject>Rodents</subject><subject>Science</subject><subject>Signal Transduction</subject><subject>Studies</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Tumor cells</subject><subject>Tumors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEoqXwDxBEQkJw2CX-ip0LaNUWWKlopaVwtSbOJPEqiUOcIPrvyXbTaoN64GRr_Mw7H36D4CWJloRJ8mHnhq6Batm6BpcREUzQ-FFwShJGFzGN2OOj-0nwzPtdFAmm4vhpcEJlJGUsxGnwaVXXrrEQrptsMOjD1dC7toTiJuzLzg1FGV64FmrbYLhFg23vuvCChdBk4bfrzfZ58CSHyuOL6TwLfny-vD7_urjafFmfr64WRgrVLwCT1GBKKeYqYcANN5AhUEaACCORMCpRkTQGyAVwFmMKVIhMKESiMsLOgtcH3bZyXk-ze02kIkRwyflIrA9E5mCn287W0N1oB1bfBlxXaOh6ayrUUUR5LJSkmWKcMZGKhDEuZKQiEiPIUevjVG1Ia8wMNn0H1Ux0_tLYUhfut-aKEUX2zbybBDr3a0Df69p6g1UFDbrh0LdgSZzQEX3zD_rwdBNVwDiAbXI31jV7Ub3ignE-kmyklg9QsN91bc1olNyO8VnC-1nCyPT4py9g8F6vv2__n938nLNvj9gSoepL76qht67xc5AfQNM57zvM75dMIr33-d029N7nevL5mPbq-IPuk-6Mzf4CTuX1Jw</recordid><startdate>20160414</startdate><enddate>20160414</enddate><creator>Li, Zhiyuan</creator><creator>Ji, Xinmiao</creator><creator>Wang, Wenchao</creator><creator>Liu, Juanjuan</creator><creator>Liang, Xiaofei</creator><creator>Wu, Hong</creator><creator>Liu, Jing</creator><creator>Eggert, Ulrike S</creator><creator>Liu, Qingsong</creator><creator>Zhang, Xin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3499-2189</orcidid></search><sort><creationdate>20160414</creationdate><title>Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR</title><author>Li, Zhiyuan ; Ji, Xinmiao ; Wang, Wenchao ; Liu, Juanjuan ; Liang, Xiaofei ; Wu, Hong ; Liu, Jing ; Eggert, Ulrike S ; Liu, Qingsong ; Zhang, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-ae9bceb22ef893a4c4cadea231a15c7e1327e81b6aaf5a436eba255d58ee18d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Ammonia</topic><topic>Ammonia - metabolism</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Biology and Life Sciences</topic><topic>Brain damage</topic><topic>Brain injury</topic><topic>Cancer</topic><topic>Cell culture</topic><topic>Cell death</topic><topic>Cell Line</topic><topic>Cell Line, Tumor</topic><topic>CHO Cells</topic><topic>Class III Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Cricetulus</topic><topic>Development and progression</topic><topic>Dopamine</topic><topic>Dopamine D3 receptors</topic><topic>Dopamine receptors</topic><topic>Genetic aspects</topic><topic>Glutamine</topic><topic>Humans</topic><topic>Hyperammonemia</topic><topic>Immunoglobulins</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Ligands</topic><topic>Liver</topic><topic>Liver diseases</topic><topic>Localization</topic><topic>Membrane proteins</topic><topic>Microenvironments</topic><topic>Neuroblastoma</topic><topic>Neurodegenerative diseases</topic><topic>Neurological diseases</topic><topic>pH effects</topic><topic>Phagocytosis</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Rapamycin</topic><topic>Receptors, Dopamine D3 - metabolism</topic><topic>Research and analysis methods</topic><topic>Risk factors</topic><topic>Rodents</topic><topic>Science</topic><topic>Signal Transduction</topic><topic>Studies</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Tumor cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhiyuan</creatorcontrib><creatorcontrib>Ji, Xinmiao</creatorcontrib><creatorcontrib>Wang, Wenchao</creatorcontrib><creatorcontrib>Liu, Juanjuan</creatorcontrib><creatorcontrib>Liang, Xiaofei</creatorcontrib><creatorcontrib>Wu, Hong</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Eggert, Ulrike S</creatorcontrib><creatorcontrib>Liu, Qingsong</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhiyuan</au><au>Ji, Xinmiao</au><au>Wang, Wenchao</au><au>Liu, Juanjuan</au><au>Liang, Xiaofei</au><au>Wu, Hong</au><au>Liu, Jing</au><au>Eggert, Ulrike S</au><au>Liu, Qingsong</au><au>Zhang, Xin</au><au>Kang, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-04-14</date><risdate>2016</risdate><volume>11</volume><issue>4</issue><spage>e0153526</spage><epage>e0153526</epage><pages>e0153526-e0153526</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Hyperammonemia is frequently seen in tumor microenvironments as well as in liver diseases where it can lead to severe brain damage or death. Ammonia induces autophagy, a mechanism that tumor cells may use to protect themselves from external stresses. However, how cells sense ammonia has been unclear. Here we show that culture medium alone containing Glutamine can generate milimolar of ammonia at 37 degrees in the absence of cells. In addition, we reveal that ammonia acts through the G protein-coupled receptor DRD3 (Dopamine receptor D3) to induce autophagy. At the same time, ammonia induces DRD3 degradation, which involves PIK3C3/VPS34-dependent pathways. Ammonia inhibits MTOR (mechanistic target of Rapamycin) activity and localization in cells, which is mediated by DRD3. Therefore, ammonia has dual roles in autophagy: one to induce autophagy through DRD3 and MTOR, the other to increase autophagosomal pH to inhibit autophagic flux. Our study not only adds a new sensing and output pathway for DRD3 that bridges ammonia sensing and autophagy induction, but also provides potential mechanisms for the clinical consequences of hyperammonemia in brain damage, neurodegenerative diseases and tumors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27077655</pmid><doi>10.1371/journal.pone.0153526</doi><orcidid>https://orcid.org/0000-0002-3499-2189</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-04, Vol.11 (4), p.e0153526-e0153526
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1781154744
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Ammonia
Ammonia - metabolism
Animals
Autophagy
Biology and Life Sciences
Brain damage
Brain injury
Cancer
Cell culture
Cell death
Cell Line
Cell Line, Tumor
CHO Cells
Class III Phosphatidylinositol 3-Kinases - metabolism
Cricetulus
Development and progression
Dopamine
Dopamine D3 receptors
Dopamine receptors
Genetic aspects
Glutamine
Humans
Hyperammonemia
Immunoglobulins
Kinases
Laboratories
Ligands
Liver
Liver diseases
Localization
Membrane proteins
Microenvironments
Neuroblastoma
Neurodegenerative diseases
Neurological diseases
pH effects
Phagocytosis
Phosphatidylinositol 3-Kinases - metabolism
Physical Sciences
Physiological aspects
Proteins
Proteolysis
Rapamycin
Receptors, Dopamine D3 - metabolism
Research and analysis methods
Risk factors
Rodents
Science
Signal Transduction
Studies
TOR protein
TOR Serine-Threonine Kinases - metabolism
Tumor cells
Tumors
title Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ammonia%20Induces%20Autophagy%20through%20Dopamine%20Receptor%20D3%20and%20MTOR&rft.jtitle=PloS%20one&rft.au=Li,%20Zhiyuan&rft.date=2016-04-14&rft.volume=11&rft.issue=4&rft.spage=e0153526&rft.epage=e0153526&rft.pages=e0153526-e0153526&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0153526&rft_dat=%3Cgale_plos_%3EA453448113%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781154744&rft_id=info:pmid/27077655&rft_galeid=A453448113&rft_doaj_id=oai_doaj_org_article_002465872d834335b593345708016ea7&rfr_iscdi=true