Determining Maximum Glycolytic Capacity Using Extracellular Flux Measurements
Measurements of glycolytic rate and maximum glycolytic capacity using extracellular flux analysis can give crucial information about cell status and phenotype during normal operation, development of pathology, differentiation, and malignant transformation. They are also of great use when assessing t...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-03, Vol.11 (3), p.e0152016-e0152016 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0152016 |
---|---|
container_issue | 3 |
container_start_page | e0152016 |
container_title | PloS one |
container_volume | 11 |
creator | Mookerjee, Shona A Nicholls, David G Brand, Martin D |
description | Measurements of glycolytic rate and maximum glycolytic capacity using extracellular flux analysis can give crucial information about cell status and phenotype during normal operation, development of pathology, differentiation, and malignant transformation. They are also of great use when assessing the effects of chemical or drug treatments. Here, we experimentally define maximum glycolytic capacity, demonstrate how it differs from glycolytic rate, and provide a protocol for determining the basal glycolytic rate and maximum glycolytic capacity in cells using extracellular flux measurements. The results illustrate the power of extracellular flux analysis to describe the energetics of adherent cells in culture in a fully quantitative way. |
doi_str_mv | 10.1371/journal.pone.0152016 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1777533680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A453451701</galeid><doaj_id>oai_doaj_org_article_94269f324f9a4f8489f02613ba570c23</doaj_id><sourcerecordid>A453451701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-f6573ef51fc2cc73733d8eb58b5a2168d2827d42687db95d541096f2379e09783</originalsourceid><addsrcrecordid>eNqNkl1v0zAYhSMEYqPwDxBEQkJw0eKPOHZukKayjUqrJgHj1nIdu_XkxJ3toPbf46zZ1KBdIF_Ysp_32Of1ybK3EMwgpvDLret8K-xs61o1A5AgAMtn2SmsMJqWCODnR-uT7FUItwAQzMryZXaCKMCQFeQ0W35TUfnGtKZd50uxM03X5Jd2L53dRyPzudgKaeI-vwk9cb6LXkhlbWeFzy9st8uXSoTOq0a1MbzOXmhhg3ozzJPs5uL81_z79Or6cjE_u5pKSlic6pJQrDSBWiIpKaYY10ytCFsRgWDJasQQrQtUMlqvKlKTAoKq1AjTSoGKMjzJ3h90t9YFPnQicEgpJRiXDCRicSBqJ2751ptG-D13wvD7DefXXPhk0CpepYsqjVGhK1FoVrBKA1RCvBKEAolw0vo63NatGlXL5NQLOxIdn7Rmw9fuDy8YLItkdZJ9GgS8u-tUiLwxoe-iaJXr7t_NKKAV7tEP_6BPuxuotUgGTKtd_y29KD8rCC4IpAAmavYElUatGiNTbLRJ-6OCz6OCxES1i2vRhcAXP3_8P3v9e8x-PGI3Sti4Cc520bg2jMHiAErvQvBKPzYZAt6n_qEbvE89H1Kfyt4df9Bj0UPM8V9uI_rB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777533680</pqid></control><display><type>article</type><title>Determining Maximum Glycolytic Capacity Using Extracellular Flux Measurements</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Mookerjee, Shona A ; Nicholls, David G ; Brand, Martin D</creator><contributor>Zhang, Jianhua</contributor><creatorcontrib>Mookerjee, Shona A ; Nicholls, David G ; Brand, Martin D ; Zhang, Jianhua</creatorcontrib><description>Measurements of glycolytic rate and maximum glycolytic capacity using extracellular flux analysis can give crucial information about cell status and phenotype during normal operation, development of pathology, differentiation, and malignant transformation. They are also of great use when assessing the effects of chemical or drug treatments. Here, we experimentally define maximum glycolytic capacity, demonstrate how it differs from glycolytic rate, and provide a protocol for determining the basal glycolytic rate and maximum glycolytic capacity in cells using extracellular flux measurements. The results illustrate the power of extracellular flux analysis to describe the energetics of adherent cells in culture in a fully quantitative way.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0152016</identifier><identifier>PMID: 27031845</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acidification ; Adenosine Triphosphate - metabolism ; Adherent cells ; Aging ; Animals ; Biochemistry - methods ; Bioenergetics ; Biology and Life Sciences ; Cancer ; Cell culture ; Cell Line ; Cell metabolism ; Cell Respiration ; Fibroblasts - metabolism ; Fluctuations ; Flux ; Genetic transformation ; Glycolysis ; Heart failure ; HEK293 Cells ; Humans ; Hyperoxia ; Metabolism ; Mice ; Myoblasts - metabolism ; Oxidative Phosphorylation ; Pharmacy ; Phosphorylation ; Physical Sciences ; Physiological aspects ; Respiration ; Sodium-Potassium-Exchanging ATPase - metabolism ; Stem cells ; Transformation</subject><ispartof>PloS one, 2016-03, Vol.11 (3), p.e0152016-e0152016</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Mookerjee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Mookerjee et al 2016 Mookerjee et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-f6573ef51fc2cc73733d8eb58b5a2168d2827d42687db95d541096f2379e09783</citedby><cites>FETCH-LOGICAL-c758t-f6573ef51fc2cc73733d8eb58b5a2168d2827d42687db95d541096f2379e09783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816457/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816457/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27031845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Jianhua</contributor><creatorcontrib>Mookerjee, Shona A</creatorcontrib><creatorcontrib>Nicholls, David G</creatorcontrib><creatorcontrib>Brand, Martin D</creatorcontrib><title>Determining Maximum Glycolytic Capacity Using Extracellular Flux Measurements</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Measurements of glycolytic rate and maximum glycolytic capacity using extracellular flux analysis can give crucial information about cell status and phenotype during normal operation, development of pathology, differentiation, and malignant transformation. They are also of great use when assessing the effects of chemical or drug treatments. Here, we experimentally define maximum glycolytic capacity, demonstrate how it differs from glycolytic rate, and provide a protocol for determining the basal glycolytic rate and maximum glycolytic capacity in cells using extracellular flux measurements. The results illustrate the power of extracellular flux analysis to describe the energetics of adherent cells in culture in a fully quantitative way.</description><subject>Acidification</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Adherent cells</subject><subject>Aging</subject><subject>Animals</subject><subject>Biochemistry - methods</subject><subject>Bioenergetics</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Cell culture</subject><subject>Cell Line</subject><subject>Cell metabolism</subject><subject>Cell Respiration</subject><subject>Fibroblasts - metabolism</subject><subject>Fluctuations</subject><subject>Flux</subject><subject>Genetic transformation</subject><subject>Glycolysis</subject><subject>Heart failure</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Hyperoxia</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Myoblasts - metabolism</subject><subject>Oxidative Phosphorylation</subject><subject>Pharmacy</subject><subject>Phosphorylation</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Respiration</subject><subject>Sodium-Potassium-Exchanging ATPase - metabolism</subject><subject>Stem cells</subject><subject>Transformation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAYhSMEYqPwDxBEQkJw0eKPOHZukKayjUqrJgHj1nIdu_XkxJ3toPbf46zZ1KBdIF_Ysp_32Of1ybK3EMwgpvDLret8K-xs61o1A5AgAMtn2SmsMJqWCODnR-uT7FUItwAQzMryZXaCKMCQFeQ0W35TUfnGtKZd50uxM03X5Jd2L53dRyPzudgKaeI-vwk9cb6LXkhlbWeFzy9st8uXSoTOq0a1MbzOXmhhg3ozzJPs5uL81_z79Or6cjE_u5pKSlic6pJQrDSBWiIpKaYY10ytCFsRgWDJasQQrQtUMlqvKlKTAoKq1AjTSoGKMjzJ3h90t9YFPnQicEgpJRiXDCRicSBqJ2751ptG-D13wvD7DefXXPhk0CpepYsqjVGhK1FoVrBKA1RCvBKEAolw0vo63NatGlXL5NQLOxIdn7Rmw9fuDy8YLItkdZJ9GgS8u-tUiLwxoe-iaJXr7t_NKKAV7tEP_6BPuxuotUgGTKtd_y29KD8rCC4IpAAmavYElUatGiNTbLRJ-6OCz6OCxES1i2vRhcAXP3_8P3v9e8x-PGI3Sti4Cc520bg2jMHiAErvQvBKPzYZAt6n_qEbvE89H1Kfyt4df9Bj0UPM8V9uI_rB</recordid><startdate>20160331</startdate><enddate>20160331</enddate><creator>Mookerjee, Shona A</creator><creator>Nicholls, David G</creator><creator>Brand, Martin D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160331</creationdate><title>Determining Maximum Glycolytic Capacity Using Extracellular Flux Measurements</title><author>Mookerjee, Shona A ; Nicholls, David G ; Brand, Martin D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-f6573ef51fc2cc73733d8eb58b5a2168d2827d42687db95d541096f2379e09783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acidification</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Adherent cells</topic><topic>Aging</topic><topic>Animals</topic><topic>Biochemistry - methods</topic><topic>Bioenergetics</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Cell culture</topic><topic>Cell Line</topic><topic>Cell metabolism</topic><topic>Cell Respiration</topic><topic>Fibroblasts - metabolism</topic><topic>Fluctuations</topic><topic>Flux</topic><topic>Genetic transformation</topic><topic>Glycolysis</topic><topic>Heart failure</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Hyperoxia</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Myoblasts - metabolism</topic><topic>Oxidative Phosphorylation</topic><topic>Pharmacy</topic><topic>Phosphorylation</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Respiration</topic><topic>Sodium-Potassium-Exchanging ATPase - metabolism</topic><topic>Stem cells</topic><topic>Transformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mookerjee, Shona A</creatorcontrib><creatorcontrib>Nicholls, David G</creatorcontrib><creatorcontrib>Brand, Martin D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mookerjee, Shona A</au><au>Nicholls, David G</au><au>Brand, Martin D</au><au>Zhang, Jianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining Maximum Glycolytic Capacity Using Extracellular Flux Measurements</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-03-31</date><risdate>2016</risdate><volume>11</volume><issue>3</issue><spage>e0152016</spage><epage>e0152016</epage><pages>e0152016-e0152016</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Measurements of glycolytic rate and maximum glycolytic capacity using extracellular flux analysis can give crucial information about cell status and phenotype during normal operation, development of pathology, differentiation, and malignant transformation. They are also of great use when assessing the effects of chemical or drug treatments. Here, we experimentally define maximum glycolytic capacity, demonstrate how it differs from glycolytic rate, and provide a protocol for determining the basal glycolytic rate and maximum glycolytic capacity in cells using extracellular flux measurements. The results illustrate the power of extracellular flux analysis to describe the energetics of adherent cells in culture in a fully quantitative way.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27031845</pmid><doi>10.1371/journal.pone.0152016</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-03, Vol.11 (3), p.e0152016-e0152016 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1777533680 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Acidification Adenosine Triphosphate - metabolism Adherent cells Aging Animals Biochemistry - methods Bioenergetics Biology and Life Sciences Cancer Cell culture Cell Line Cell metabolism Cell Respiration Fibroblasts - metabolism Fluctuations Flux Genetic transformation Glycolysis Heart failure HEK293 Cells Humans Hyperoxia Metabolism Mice Myoblasts - metabolism Oxidative Phosphorylation Pharmacy Phosphorylation Physical Sciences Physiological aspects Respiration Sodium-Potassium-Exchanging ATPase - metabolism Stem cells Transformation |
title | Determining Maximum Glycolytic Capacity Using Extracellular Flux Measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20Maximum%20Glycolytic%20Capacity%20Using%20Extracellular%20Flux%20Measurements&rft.jtitle=PloS%20one&rft.au=Mookerjee,%20Shona%20A&rft.date=2016-03-31&rft.volume=11&rft.issue=3&rft.spage=e0152016&rft.epage=e0152016&rft.pages=e0152016-e0152016&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0152016&rft_dat=%3Cgale_plos_%3EA453451701%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777533680&rft_id=info:pmid/27031845&rft_galeid=A453451701&rft_doaj_id=oai_doaj_org_article_94269f324f9a4f8489f02613ba570c23&rfr_iscdi=true |