PKR Transduces MDA5-Dependent Signals for Type I IFN Induction

Sensing invading pathogens early in infection is critical for establishing host defense. Two cytosolic RIG-like RNA helicases, RIG-I and MDA5, are key to type I interferon (IFN) induction in response to viral infection. Mounting evidence suggests that another viral RNA sensor, protein kinase R (PKR)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2016-03, Vol.12 (3), p.e1005489-e1005489
Hauptverfasser: Pham, Alissa M, Santa Maria, Felicia Gilfoy, Lahiri, Tanaya, Friedman, Eugene, Marié, Isabelle J, Levy, David E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1005489
container_issue 3
container_start_page e1005489
container_title PLoS pathogens
container_volume 12
creator Pham, Alissa M
Santa Maria, Felicia Gilfoy
Lahiri, Tanaya
Friedman, Eugene
Marié, Isabelle J
Levy, David E
description Sensing invading pathogens early in infection is critical for establishing host defense. Two cytosolic RIG-like RNA helicases, RIG-I and MDA5, are key to type I interferon (IFN) induction in response to viral infection. Mounting evidence suggests that another viral RNA sensor, protein kinase R (PKR), may also be critical for IFN induction during infection, although its exact contribution and mechanism of action are not completely understood. Using PKR-deficient cells, we found that PKR was required for type I IFN induction in response to infection by vaccinia virus lacking the PKR antagonist E3L (VVΔE3L), but not by Sendai virus or influenza A virus lacking the IFN-antagonist NS1 (FluΔNS1). IFN induction required the catalytic activity of PKR, but not the phosphorylation of its principal substrate, eIF2α, or the resulting inhibition of host translation. In the absence of PKR, IRF3 nuclear translocation was impaired in response to MDA5 activators, VVΔE3L and encephalomyocarditis virus, but not during infection with a RIG-I-activating virus. Interestingly, PKR interacted with both RIG-I and MDA5; however, PKR was only required for MDA5-mediated, but not RIG-I-mediated, IFN production. Using an artificially activated form of PKR, we showed that PKR activity alone was sufficient for IFN induction. This effect required MAVS and correlated with IRF3 activation, but no longer required MDA5. Nonetheless, PKR activation during viral infection was enhanced by MDA5, as virus-stimulated catalytic activity was impaired in MDA5-null cells. Taken together, our data describe a critical and non-redundant role for PKR following MDA5, but not RIG-I, activation to mediate MAVS-dependent induction of type I IFN through a kinase-dependent mechanism.
doi_str_mv 10.1371/journal.ppat.1005489
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1777280545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476896822</galeid><doaj_id>oai_doaj_org_article_cb33bc7fc130467bb092f0b5d42cdf1e</doaj_id><sourcerecordid>A476896822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-39005990a7bdc38b0b9d553d2d3e0951b486326483b667fb3cc331cc0eebeede3</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHLHbs2Mml0qqlEFEKapez5Y9JyCobp3aC6L_H6aZVg3pBPtgaP_POvKOJotcYrTDh-OPWjq6T7arv5bDCCGU0L55EhzjLSMIJp08fvA-iF95vEaKYYPY8OkhZQQqc0sPo-MfXy3jjZOfNqMHH307XWXIKPXQGuiG-aupQw8eVdfHmpoe4jMuzi7jsAj00tnsZPavCP7ya76Po59mnzcmX5Pz75_JkfZ5oxvCQkCL0VxRIcmU0yRVShQm9mdQQQEWGFc0ZSRnNiWKMV4poTQjWGgEoAAPkKHq71-1b68Vs3QvMOU_zYD0LRLknjJVb0btmJ92NsLIRtwHraiHd0OgWhFaEKM0rjQmijCuFirRCKjM01abCU7XjudqodmB0mIST7UJ0-dM1v0Rtfwsa-qGEB4H3s4Cz1yP4Qewar6FtZQd2vO0b5ZykWRrQd_-gj7ubqVoGA01X2VBXT6JiTTnLC5ank9bqESocA7tG2w6qJsQXCR8WCYEZ4M9Qy9F7UV5d_gd7sWTpntXOeu-gup8dRmLa3juTYtpeMW9vSHvzcO73SXfrSv4C0LXoZA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777280545</pqid></control><display><type>article</type><title>PKR Transduces MDA5-Dependent Signals for Type I IFN Induction</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Pham, Alissa M ; Santa Maria, Felicia Gilfoy ; Lahiri, Tanaya ; Friedman, Eugene ; Marié, Isabelle J ; Levy, David E</creator><contributor>Samuel, Charles E</contributor><creatorcontrib>Pham, Alissa M ; Santa Maria, Felicia Gilfoy ; Lahiri, Tanaya ; Friedman, Eugene ; Marié, Isabelle J ; Levy, David E ; Samuel, Charles E</creatorcontrib><description>Sensing invading pathogens early in infection is critical for establishing host defense. Two cytosolic RIG-like RNA helicases, RIG-I and MDA5, are key to type I interferon (IFN) induction in response to viral infection. Mounting evidence suggests that another viral RNA sensor, protein kinase R (PKR), may also be critical for IFN induction during infection, although its exact contribution and mechanism of action are not completely understood. Using PKR-deficient cells, we found that PKR was required for type I IFN induction in response to infection by vaccinia virus lacking the PKR antagonist E3L (VVΔE3L), but not by Sendai virus or influenza A virus lacking the IFN-antagonist NS1 (FluΔNS1). IFN induction required the catalytic activity of PKR, but not the phosphorylation of its principal substrate, eIF2α, or the resulting inhibition of host translation. In the absence of PKR, IRF3 nuclear translocation was impaired in response to MDA5 activators, VVΔE3L and encephalomyocarditis virus, but not during infection with a RIG-I-activating virus. Interestingly, PKR interacted with both RIG-I and MDA5; however, PKR was only required for MDA5-mediated, but not RIG-I-mediated, IFN production. Using an artificially activated form of PKR, we showed that PKR activity alone was sufficient for IFN induction. This effect required MAVS and correlated with IRF3 activation, but no longer required MDA5. Nonetheless, PKR activation during viral infection was enhanced by MDA5, as virus-stimulated catalytic activity was impaired in MDA5-null cells. Taken together, our data describe a critical and non-redundant role for PKR following MDA5, but not RIG-I, activation to mediate MAVS-dependent induction of type I IFN through a kinase-dependent mechanism.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1005489</identifier><identifier>PMID: 26939124</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Cell Line ; Cellular signal transduction ; DEAD Box Protein 58 ; DEAD-box RNA Helicases - genetics ; DEAD-box RNA Helicases - metabolism ; eIF-2 Kinase - genetics ; eIF-2 Kinase - metabolism ; Encephalomyocarditis virus - genetics ; Encephalomyocarditis virus - immunology ; Eukaryotic Initiation Factor-2 - genetics ; Eukaryotic Initiation Factor-2 - metabolism ; Genes, Reporter ; Genetic aspects ; Glycerol ; Health aspects ; Humans ; Immune response ; Infections ; Interferon ; Interferon Type I - metabolism ; Interferon-Induced Helicase, IFIH1 ; Kinases ; Laboratories ; Medicine and Health Sciences ; Mutation ; Phosphorylation ; Protein expression ; Protein kinases ; Proteins ; Receptors, Immunologic ; Research and Analysis Methods ; RNA, Viral - genetics ; Signal Transduction ; Vaccinia - immunology ; Vaccinia - virology ; Vaccinia virus - genetics ; Vaccinia virus - immunology ; Viral infections ; Viral Proteins - genetics ; Viral Proteins - metabolism ; Viruses</subject><ispartof>PLoS pathogens, 2016-03, Vol.12 (3), p.e1005489-e1005489</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Pham AM, Santa Maria FG, Lahiri T, Friedman E, Marié IJ, Levy DE (2016) PKR Transduces MDA5-Dependent Signals for Type I IFN Induction. PLoS Pathog 12(3): e1005489. doi:10.1371/journal.ppat.1005489</rights><rights>2016 Pham et al 2016 Pham et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Pham AM, Santa Maria FG, Lahiri T, Friedman E, Marié IJ, Levy DE (2016) PKR Transduces MDA5-Dependent Signals for Type I IFN Induction. PLoS Pathog 12(3): e1005489. doi:10.1371/journal.ppat.1005489</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-39005990a7bdc38b0b9d553d2d3e0951b486326483b667fb3cc331cc0eebeede3</citedby><cites>FETCH-LOGICAL-c661t-39005990a7bdc38b0b9d553d2d3e0951b486326483b667fb3cc331cc0eebeede3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777437/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777437/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26939124$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Samuel, Charles E</contributor><creatorcontrib>Pham, Alissa M</creatorcontrib><creatorcontrib>Santa Maria, Felicia Gilfoy</creatorcontrib><creatorcontrib>Lahiri, Tanaya</creatorcontrib><creatorcontrib>Friedman, Eugene</creatorcontrib><creatorcontrib>Marié, Isabelle J</creatorcontrib><creatorcontrib>Levy, David E</creatorcontrib><title>PKR Transduces MDA5-Dependent Signals for Type I IFN Induction</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Sensing invading pathogens early in infection is critical for establishing host defense. Two cytosolic RIG-like RNA helicases, RIG-I and MDA5, are key to type I interferon (IFN) induction in response to viral infection. Mounting evidence suggests that another viral RNA sensor, protein kinase R (PKR), may also be critical for IFN induction during infection, although its exact contribution and mechanism of action are not completely understood. Using PKR-deficient cells, we found that PKR was required for type I IFN induction in response to infection by vaccinia virus lacking the PKR antagonist E3L (VVΔE3L), but not by Sendai virus or influenza A virus lacking the IFN-antagonist NS1 (FluΔNS1). IFN induction required the catalytic activity of PKR, but not the phosphorylation of its principal substrate, eIF2α, or the resulting inhibition of host translation. In the absence of PKR, IRF3 nuclear translocation was impaired in response to MDA5 activators, VVΔE3L and encephalomyocarditis virus, but not during infection with a RIG-I-activating virus. Interestingly, PKR interacted with both RIG-I and MDA5; however, PKR was only required for MDA5-mediated, but not RIG-I-mediated, IFN production. Using an artificially activated form of PKR, we showed that PKR activity alone was sufficient for IFN induction. This effect required MAVS and correlated with IRF3 activation, but no longer required MDA5. Nonetheless, PKR activation during viral infection was enhanced by MDA5, as virus-stimulated catalytic activity was impaired in MDA5-null cells. Taken together, our data describe a critical and non-redundant role for PKR following MDA5, but not RIG-I, activation to mediate MAVS-dependent induction of type I IFN through a kinase-dependent mechanism.</description><subject>Biology and Life Sciences</subject><subject>Cell Line</subject><subject>Cellular signal transduction</subject><subject>DEAD Box Protein 58</subject><subject>DEAD-box RNA Helicases - genetics</subject><subject>DEAD-box RNA Helicases - metabolism</subject><subject>eIF-2 Kinase - genetics</subject><subject>eIF-2 Kinase - metabolism</subject><subject>Encephalomyocarditis virus - genetics</subject><subject>Encephalomyocarditis virus - immunology</subject><subject>Eukaryotic Initiation Factor-2 - genetics</subject><subject>Eukaryotic Initiation Factor-2 - metabolism</subject><subject>Genes, Reporter</subject><subject>Genetic aspects</subject><subject>Glycerol</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Immune response</subject><subject>Infections</subject><subject>Interferon</subject><subject>Interferon Type I - metabolism</subject><subject>Interferon-Induced Helicase, IFIH1</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Medicine and Health Sciences</subject><subject>Mutation</subject><subject>Phosphorylation</subject><subject>Protein expression</subject><subject>Protein kinases</subject><subject>Proteins</subject><subject>Receptors, Immunologic</subject><subject>Research and Analysis Methods</subject><subject>RNA, Viral - genetics</subject><subject>Signal Transduction</subject><subject>Vaccinia - immunology</subject><subject>Vaccinia - virology</subject><subject>Vaccinia virus - genetics</subject><subject>Vaccinia virus - immunology</subject><subject>Viral infections</subject><subject>Viral Proteins - genetics</subject><subject>Viral Proteins - metabolism</subject><subject>Viruses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHLHbs2Mml0qqlEFEKapez5Y9JyCobp3aC6L_H6aZVg3pBPtgaP_POvKOJotcYrTDh-OPWjq6T7arv5bDCCGU0L55EhzjLSMIJp08fvA-iF95vEaKYYPY8OkhZQQqc0sPo-MfXy3jjZOfNqMHH307XWXIKPXQGuiG-aupQw8eVdfHmpoe4jMuzi7jsAj00tnsZPavCP7ya76Po59mnzcmX5Pz75_JkfZ5oxvCQkCL0VxRIcmU0yRVShQm9mdQQQEWGFc0ZSRnNiWKMV4poTQjWGgEoAAPkKHq71-1b68Vs3QvMOU_zYD0LRLknjJVb0btmJ92NsLIRtwHraiHd0OgWhFaEKM0rjQmijCuFirRCKjM01abCU7XjudqodmB0mIST7UJ0-dM1v0Rtfwsa-qGEB4H3s4Cz1yP4Qewar6FtZQd2vO0b5ZykWRrQd_-gj7ubqVoGA01X2VBXT6JiTTnLC5ank9bqESocA7tG2w6qJsQXCR8WCYEZ4M9Qy9F7UV5d_gd7sWTpntXOeu-gup8dRmLa3juTYtpeMW9vSHvzcO73SXfrSv4C0LXoZA</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Pham, Alissa M</creator><creator>Santa Maria, Felicia Gilfoy</creator><creator>Lahiri, Tanaya</creator><creator>Friedman, Eugene</creator><creator>Marié, Isabelle J</creator><creator>Levy, David E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160301</creationdate><title>PKR Transduces MDA5-Dependent Signals for Type I IFN Induction</title><author>Pham, Alissa M ; Santa Maria, Felicia Gilfoy ; Lahiri, Tanaya ; Friedman, Eugene ; Marié, Isabelle J ; Levy, David E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-39005990a7bdc38b0b9d553d2d3e0951b486326483b667fb3cc331cc0eebeede3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biology and Life Sciences</topic><topic>Cell Line</topic><topic>Cellular signal transduction</topic><topic>DEAD Box Protein 58</topic><topic>DEAD-box RNA Helicases - genetics</topic><topic>DEAD-box RNA Helicases - metabolism</topic><topic>eIF-2 Kinase - genetics</topic><topic>eIF-2 Kinase - metabolism</topic><topic>Encephalomyocarditis virus - genetics</topic><topic>Encephalomyocarditis virus - immunology</topic><topic>Eukaryotic Initiation Factor-2 - genetics</topic><topic>Eukaryotic Initiation Factor-2 - metabolism</topic><topic>Genes, Reporter</topic><topic>Genetic aspects</topic><topic>Glycerol</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Immune response</topic><topic>Infections</topic><topic>Interferon</topic><topic>Interferon Type I - metabolism</topic><topic>Interferon-Induced Helicase, IFIH1</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Medicine and Health Sciences</topic><topic>Mutation</topic><topic>Phosphorylation</topic><topic>Protein expression</topic><topic>Protein kinases</topic><topic>Proteins</topic><topic>Receptors, Immunologic</topic><topic>Research and Analysis Methods</topic><topic>RNA, Viral - genetics</topic><topic>Signal Transduction</topic><topic>Vaccinia - immunology</topic><topic>Vaccinia - virology</topic><topic>Vaccinia virus - genetics</topic><topic>Vaccinia virus - immunology</topic><topic>Viral infections</topic><topic>Viral Proteins - genetics</topic><topic>Viral Proteins - metabolism</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Alissa M</creatorcontrib><creatorcontrib>Santa Maria, Felicia Gilfoy</creatorcontrib><creatorcontrib>Lahiri, Tanaya</creatorcontrib><creatorcontrib>Friedman, Eugene</creatorcontrib><creatorcontrib>Marié, Isabelle J</creatorcontrib><creatorcontrib>Levy, David E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Alissa M</au><au>Santa Maria, Felicia Gilfoy</au><au>Lahiri, Tanaya</au><au>Friedman, Eugene</au><au>Marié, Isabelle J</au><au>Levy, David E</au><au>Samuel, Charles E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PKR Transduces MDA5-Dependent Signals for Type I IFN Induction</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>12</volume><issue>3</issue><spage>e1005489</spage><epage>e1005489</epage><pages>e1005489-e1005489</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Sensing invading pathogens early in infection is critical for establishing host defense. Two cytosolic RIG-like RNA helicases, RIG-I and MDA5, are key to type I interferon (IFN) induction in response to viral infection. Mounting evidence suggests that another viral RNA sensor, protein kinase R (PKR), may also be critical for IFN induction during infection, although its exact contribution and mechanism of action are not completely understood. Using PKR-deficient cells, we found that PKR was required for type I IFN induction in response to infection by vaccinia virus lacking the PKR antagonist E3L (VVΔE3L), but not by Sendai virus or influenza A virus lacking the IFN-antagonist NS1 (FluΔNS1). IFN induction required the catalytic activity of PKR, but not the phosphorylation of its principal substrate, eIF2α, or the resulting inhibition of host translation. In the absence of PKR, IRF3 nuclear translocation was impaired in response to MDA5 activators, VVΔE3L and encephalomyocarditis virus, but not during infection with a RIG-I-activating virus. Interestingly, PKR interacted with both RIG-I and MDA5; however, PKR was only required for MDA5-mediated, but not RIG-I-mediated, IFN production. Using an artificially activated form of PKR, we showed that PKR activity alone was sufficient for IFN induction. This effect required MAVS and correlated with IRF3 activation, but no longer required MDA5. Nonetheless, PKR activation during viral infection was enhanced by MDA5, as virus-stimulated catalytic activity was impaired in MDA5-null cells. Taken together, our data describe a critical and non-redundant role for PKR following MDA5, but not RIG-I, activation to mediate MAVS-dependent induction of type I IFN through a kinase-dependent mechanism.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26939124</pmid><doi>10.1371/journal.ppat.1005489</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2016-03, Vol.12 (3), p.e1005489-e1005489
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_1777280545
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects Biology and Life Sciences
Cell Line
Cellular signal transduction
DEAD Box Protein 58
DEAD-box RNA Helicases - genetics
DEAD-box RNA Helicases - metabolism
eIF-2 Kinase - genetics
eIF-2 Kinase - metabolism
Encephalomyocarditis virus - genetics
Encephalomyocarditis virus - immunology
Eukaryotic Initiation Factor-2 - genetics
Eukaryotic Initiation Factor-2 - metabolism
Genes, Reporter
Genetic aspects
Glycerol
Health aspects
Humans
Immune response
Infections
Interferon
Interferon Type I - metabolism
Interferon-Induced Helicase, IFIH1
Kinases
Laboratories
Medicine and Health Sciences
Mutation
Phosphorylation
Protein expression
Protein kinases
Proteins
Receptors, Immunologic
Research and Analysis Methods
RNA, Viral - genetics
Signal Transduction
Vaccinia - immunology
Vaccinia - virology
Vaccinia virus - genetics
Vaccinia virus - immunology
Viral infections
Viral Proteins - genetics
Viral Proteins - metabolism
Viruses
title PKR Transduces MDA5-Dependent Signals for Type I IFN Induction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A41%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PKR%20Transduces%20MDA5-Dependent%20Signals%20for%20Type%20I%20IFN%20Induction&rft.jtitle=PLoS%20pathogens&rft.au=Pham,%20Alissa%20M&rft.date=2016-03-01&rft.volume=12&rft.issue=3&rft.spage=e1005489&rft.epage=e1005489&rft.pages=e1005489-e1005489&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1005489&rft_dat=%3Cgale_plos_%3EA476896822%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777280545&rft_id=info:pmid/26939124&rft_galeid=A476896822&rft_doaj_id=oai_doaj_org_article_cb33bc7fc130467bb092f0b5d42cdf1e&rfr_iscdi=true