A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates
Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-03, Vol.11 (3), p.e0152209-e0152209 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0152209 |
---|---|
container_issue | 3 |
container_start_page | e0152209 |
container_title | PloS one |
container_volume | 11 |
creator | Govindarajan, Dhanasekaran Guan, Liming Meschino, Steven Fridman, Arthur Bagchi, Ansu Pak, Irene ter Meulen, Jan Casimiro, Danilo R Bett, Andrew J |
description | Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses. |
doi_str_mv | 10.1371/journal.pone.0152209 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1775368385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A453470578</galeid><doaj_id>oai_doaj_org_article_d9159dd00b534679b40888da1c3e0a7b</doaj_id><sourcerecordid>A453470578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-9c14e42d29b834d14a4ae39a993b1464aa95114c1de3ed8c7bae6ee81e7feb793</originalsourceid><addsrcrecordid>eNqNklFv0zAQxyMEYmPwDRBEQkLw0GLHTmK_IFUDRqWhSR301XLsa-sqsTvbmeDb467Z1KA9ID_YOv_uf77zP8teYzTFpMaftq73VrbTnbMwRbgsCsSfZKeYk2JSFYg8PTqfZC9C2CJUElZVz7OTokaIlSU6za5n-ULujM6l1fm823l3Czr_AXHjdB5dfgEWvIyQL0C5rjFW2ph_AbvuIV8a34d8KZUyFvLzpGB0QsPL7NlKtgFeDftZ9uvb15_n3yeXVxfz89nlRFW8iBOuMAVa6II3jFCNqaQSCJeckwbTikrJS4ypwhoIaKbqRkIFwDDUK2hqTs6ytwfdXeuCGOYRBK7rklSMsDIR8wOhndyKnTed9H-Ek0bcBZxfC-mjUS0IzXHJtUaoKQmtat5QxBjTEisCSNZN0vo8VOubDrQCG71sR6LjG2s2Yu1uBWWoLChNAh8GAe9ueghRdCYoaFtpwfV3764QxwXeo-_-QR_vbqDWMjVg7MqlumovKmY0dVGjsmaJmj5CpaWhMyqZZ2VSfJTwcZSQmAi_41r2IYj59eL_2avlmH1_xG5AtnETXNtH42wYg_QAKu9C8LB6GDJGYu_9-2mIvffF4P2U9ub4gx6S7s1O_gK25P1p</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1775368385</pqid></control><display><type>article</type><title>A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Govindarajan, Dhanasekaran ; Guan, Liming ; Meschino, Steven ; Fridman, Arthur ; Bagchi, Ansu ; Pak, Irene ; ter Meulen, Jan ; Casimiro, Danilo R ; Bett, Andrew J</creator><contributor>Wang, Tian</contributor><creatorcontrib>Govindarajan, Dhanasekaran ; Guan, Liming ; Meschino, Steven ; Fridman, Arthur ; Bagchi, Ansu ; Pak, Irene ; ter Meulen, Jan ; Casimiro, Danilo R ; Bett, Andrew J ; Wang, Tian</creatorcontrib><description>Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0152209</identifier><identifier>PMID: 27008550</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Aquatic insects ; Bacteria ; Biology and life sciences ; Chlorocebus aethiops ; Cloning ; Dengue ; Dengue - prevention & control ; Dengue fever ; Dengue Vaccines - chemical synthesis ; Dengue Vaccines - immunology ; Dengue Virus - genetics ; Dengue Virus - immunology ; Dengue viruses ; E coli ; Encephalitis ; Female ; Fever ; Flavivirus ; Fragments ; Gene sequencing ; Genetic aspects ; Genetics ; Genomes ; Genomic instability ; Immunity ; Infectious diseases ; Laboratories ; Licenses ; Macaca mulatta ; Male ; Medicine and Health Sciences ; Methods ; Morbidity ; Mutation ; Neutralization Tests ; Physiological aspects ; Plasmids ; Polymerase Chain Reaction - methods ; Prevention ; Recombinant Fusion Proteins - genetics ; Recovery ; Research and Analysis Methods ; Ribonucleic acid ; RNA ; RNA viruses ; Stability ; Tropical diseases ; Vaccines ; Vaccines, DNA - chemical synthesis ; Vaccines, DNA - immunology ; Vector-borne diseases ; Vero Cells - virology ; Viral diseases ; Viral vaccines ; Viruses ; West Nile virus ; Yellow fever ; Yellow fever virus - genetics ; Zika virus</subject><ispartof>PloS one, 2016-03, Vol.11 (3), p.e0152209-e0152209</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Govindarajan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Govindarajan et al 2016 Govindarajan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-9c14e42d29b834d14a4ae39a993b1464aa95114c1de3ed8c7bae6ee81e7feb793</citedby><cites>FETCH-LOGICAL-c692t-9c14e42d29b834d14a4ae39a993b1464aa95114c1de3ed8c7bae6ee81e7feb793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4805244/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4805244/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27008550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wang, Tian</contributor><creatorcontrib>Govindarajan, Dhanasekaran</creatorcontrib><creatorcontrib>Guan, Liming</creatorcontrib><creatorcontrib>Meschino, Steven</creatorcontrib><creatorcontrib>Fridman, Arthur</creatorcontrib><creatorcontrib>Bagchi, Ansu</creatorcontrib><creatorcontrib>Pak, Irene</creatorcontrib><creatorcontrib>ter Meulen, Jan</creatorcontrib><creatorcontrib>Casimiro, Danilo R</creatorcontrib><creatorcontrib>Bett, Andrew J</creatorcontrib><title>A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.</description><subject>Animals</subject><subject>Aquatic insects</subject><subject>Bacteria</subject><subject>Biology and life sciences</subject><subject>Chlorocebus aethiops</subject><subject>Cloning</subject><subject>Dengue</subject><subject>Dengue - prevention & control</subject><subject>Dengue fever</subject><subject>Dengue Vaccines - chemical synthesis</subject><subject>Dengue Vaccines - immunology</subject><subject>Dengue Virus - genetics</subject><subject>Dengue Virus - immunology</subject><subject>Dengue viruses</subject><subject>E coli</subject><subject>Encephalitis</subject><subject>Female</subject><subject>Fever</subject><subject>Flavivirus</subject><subject>Fragments</subject><subject>Gene sequencing</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomic instability</subject><subject>Immunity</subject><subject>Infectious diseases</subject><subject>Laboratories</subject><subject>Licenses</subject><subject>Macaca mulatta</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Morbidity</subject><subject>Mutation</subject><subject>Neutralization Tests</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Prevention</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recovery</subject><subject>Research and Analysis Methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA viruses</subject><subject>Stability</subject><subject>Tropical diseases</subject><subject>Vaccines</subject><subject>Vaccines, DNA - chemical synthesis</subject><subject>Vaccines, DNA - immunology</subject><subject>Vector-borne diseases</subject><subject>Vero Cells - virology</subject><subject>Viral diseases</subject><subject>Viral vaccines</subject><subject>Viruses</subject><subject>West Nile virus</subject><subject>Yellow fever</subject><subject>Yellow fever virus - genetics</subject><subject>Zika virus</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNklFv0zAQxyMEYmPwDRBEQkLw0GLHTmK_IFUDRqWhSR301XLsa-sqsTvbmeDb467Z1KA9ID_YOv_uf77zP8teYzTFpMaftq73VrbTnbMwRbgsCsSfZKeYk2JSFYg8PTqfZC9C2CJUElZVz7OTokaIlSU6za5n-ULujM6l1fm823l3Czr_AXHjdB5dfgEWvIyQL0C5rjFW2ph_AbvuIV8a34d8KZUyFvLzpGB0QsPL7NlKtgFeDftZ9uvb15_n3yeXVxfz89nlRFW8iBOuMAVa6II3jFCNqaQSCJeckwbTikrJS4ypwhoIaKbqRkIFwDDUK2hqTs6ytwfdXeuCGOYRBK7rklSMsDIR8wOhndyKnTed9H-Ek0bcBZxfC-mjUS0IzXHJtUaoKQmtat5QxBjTEisCSNZN0vo8VOubDrQCG71sR6LjG2s2Yu1uBWWoLChNAh8GAe9ueghRdCYoaFtpwfV3764QxwXeo-_-QR_vbqDWMjVg7MqlumovKmY0dVGjsmaJmj5CpaWhMyqZZ2VSfJTwcZSQmAi_41r2IYj59eL_2avlmH1_xG5AtnETXNtH42wYg_QAKu9C8LB6GDJGYu_9-2mIvffF4P2U9ub4gx6S7s1O_gK25P1p</recordid><startdate>20160323</startdate><enddate>20160323</enddate><creator>Govindarajan, Dhanasekaran</creator><creator>Guan, Liming</creator><creator>Meschino, Steven</creator><creator>Fridman, Arthur</creator><creator>Bagchi, Ansu</creator><creator>Pak, Irene</creator><creator>ter Meulen, Jan</creator><creator>Casimiro, Danilo R</creator><creator>Bett, Andrew J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160323</creationdate><title>A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates</title><author>Govindarajan, Dhanasekaran ; Guan, Liming ; Meschino, Steven ; Fridman, Arthur ; Bagchi, Ansu ; Pak, Irene ; ter Meulen, Jan ; Casimiro, Danilo R ; Bett, Andrew J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-9c14e42d29b834d14a4ae39a993b1464aa95114c1de3ed8c7bae6ee81e7feb793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Aquatic insects</topic><topic>Bacteria</topic><topic>Biology and life sciences</topic><topic>Chlorocebus aethiops</topic><topic>Cloning</topic><topic>Dengue</topic><topic>Dengue - prevention & control</topic><topic>Dengue fever</topic><topic>Dengue Vaccines - chemical synthesis</topic><topic>Dengue Vaccines - immunology</topic><topic>Dengue Virus - genetics</topic><topic>Dengue Virus - immunology</topic><topic>Dengue viruses</topic><topic>E coli</topic><topic>Encephalitis</topic><topic>Female</topic><topic>Fever</topic><topic>Flavivirus</topic><topic>Fragments</topic><topic>Gene sequencing</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomic instability</topic><topic>Immunity</topic><topic>Infectious diseases</topic><topic>Laboratories</topic><topic>Licenses</topic><topic>Macaca mulatta</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Morbidity</topic><topic>Mutation</topic><topic>Neutralization Tests</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Prevention</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recovery</topic><topic>Research and Analysis Methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA viruses</topic><topic>Stability</topic><topic>Tropical diseases</topic><topic>Vaccines</topic><topic>Vaccines, DNA - chemical synthesis</topic><topic>Vaccines, DNA - immunology</topic><topic>Vector-borne diseases</topic><topic>Vero Cells - virology</topic><topic>Viral diseases</topic><topic>Viral vaccines</topic><topic>Viruses</topic><topic>West Nile virus</topic><topic>Yellow fever</topic><topic>Yellow fever virus - genetics</topic><topic>Zika virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Govindarajan, Dhanasekaran</creatorcontrib><creatorcontrib>Guan, Liming</creatorcontrib><creatorcontrib>Meschino, Steven</creatorcontrib><creatorcontrib>Fridman, Arthur</creatorcontrib><creatorcontrib>Bagchi, Ansu</creatorcontrib><creatorcontrib>Pak, Irene</creatorcontrib><creatorcontrib>ter Meulen, Jan</creatorcontrib><creatorcontrib>Casimiro, Danilo R</creatorcontrib><creatorcontrib>Bett, Andrew J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Govindarajan, Dhanasekaran</au><au>Guan, Liming</au><au>Meschino, Steven</au><au>Fridman, Arthur</au><au>Bagchi, Ansu</au><au>Pak, Irene</au><au>ter Meulen, Jan</au><au>Casimiro, Danilo R</au><au>Bett, Andrew J</au><au>Wang, Tian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-03-23</date><risdate>2016</risdate><volume>11</volume><issue>3</issue><spage>e0152209</spage><epage>e0152209</epage><pages>e0152209-e0152209</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27008550</pmid><doi>10.1371/journal.pone.0152209</doi><tpages>e0152209</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-03, Vol.11 (3), p.e0152209-e0152209 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1775368385 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Animals Aquatic insects Bacteria Biology and life sciences Chlorocebus aethiops Cloning Dengue Dengue - prevention & control Dengue fever Dengue Vaccines - chemical synthesis Dengue Vaccines - immunology Dengue Virus - genetics Dengue Virus - immunology Dengue viruses E coli Encephalitis Female Fever Flavivirus Fragments Gene sequencing Genetic aspects Genetics Genomes Genomic instability Immunity Infectious diseases Laboratories Licenses Macaca mulatta Male Medicine and Health Sciences Methods Morbidity Mutation Neutralization Tests Physiological aspects Plasmids Polymerase Chain Reaction - methods Prevention Recombinant Fusion Proteins - genetics Recovery Research and Analysis Methods Ribonucleic acid RNA RNA viruses Stability Tropical diseases Vaccines Vaccines, DNA - chemical synthesis Vaccines, DNA - immunology Vector-borne diseases Vero Cells - virology Viral diseases Viral vaccines Viruses West Nile virus Yellow fever Yellow fever virus - genetics Zika virus |
title | A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Rapid%20and%20Improved%20Method%20to%20Generate%20Recombinant%20Dengue%20Virus%20Vaccine%20Candidates&rft.jtitle=PloS%20one&rft.au=Govindarajan,%20Dhanasekaran&rft.date=2016-03-23&rft.volume=11&rft.issue=3&rft.spage=e0152209&rft.epage=e0152209&rft.pages=e0152209-e0152209&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0152209&rft_dat=%3Cgale_plos_%3EA453470578%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1775368385&rft_id=info:pmid/27008550&rft_galeid=A453470578&rft_doaj_id=oai_doaj_org_article_d9159dd00b534679b40888da1c3e0a7b&rfr_iscdi=true |