Oncogenic Herpesvirus Utilizes Stress-Induced Cell Cycle Checkpoints for Efficient Lytic Replication

Kaposi's sarcoma herpesvirus (KSHV) causes Kaposi's sarcoma and certain lymphoproliferative malignancies. Latent infection is established in the majority of tumor cells, whereas lytic replication is reactivated in a small fraction of cells, which is important for both virus spread and dise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLOS PATHOGENS 2016-02, Vol.12 (2), p.e1005424-e1005424
Hauptverfasser: Balistreri, Giuseppe, Viiliäinen, Johanna, Turunen, Mikko, Diaz, Raquel, Lyly, Lauri, Pekkonen, Pirita, Rantala, Juha, Ojala, Krista, Sarek, Grzegorz, Teesalu, Mari, Denisova, Oxana, Peltonen, Karita, Julkunen, Ilkka, Varjosalo, Markku, Kainov, Denis, Kallioniemi, Olli, Laiho, Marikki, Taipale, Jussi, Hautaniemi, Sampsa, Ojala, Päivi M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1005424
container_issue 2
container_start_page e1005424
container_title PLOS PATHOGENS
container_volume 12
creator Balistreri, Giuseppe
Viiliäinen, Johanna
Turunen, Mikko
Diaz, Raquel
Lyly, Lauri
Pekkonen, Pirita
Rantala, Juha
Ojala, Krista
Sarek, Grzegorz
Teesalu, Mari
Denisova, Oxana
Peltonen, Karita
Julkunen, Ilkka
Varjosalo, Markku
Kainov, Denis
Kallioniemi, Olli
Laiho, Marikki
Taipale, Jussi
Hautaniemi, Sampsa
Ojala, Päivi M
description Kaposi's sarcoma herpesvirus (KSHV) causes Kaposi's sarcoma and certain lymphoproliferative malignancies. Latent infection is established in the majority of tumor cells, whereas lytic replication is reactivated in a small fraction of cells, which is important for both virus spread and disease progression. A siRNA screen for novel regulators of KSHV reactivation identified the E3 ubiquitin ligase MDM2 as a negative regulator of viral reactivation. Depletion of MDM2, a repressor of p53, favored efficient activation of the viral lytic transcription program and viral reactivation. During lytic replication cells activated a p53 response, accumulated DNA damage and arrested at G2-phase. Depletion of p21, a p53 target gene, restored cell cycle progression and thereby impaired the virus reactivation cascade delaying the onset of virus replication induced cytopathic effect. Herpesviruses are known to reactivate in response to different kinds of stress, and our study now highlights the molecular events in the stressed host cell that KSHV has evolved to utilize to ensure efficient viral lytic replication.
doi_str_mv 10.1371/journal.ppat.1005424
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1774220003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476896773</galeid><doaj_id>oai_doaj_org_article_207f588768644df382ad16ba122175cb</doaj_id><sourcerecordid>A476896773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c671t-83c1f7850c7b20574bfd45ed69cf59badc2c900e538b0392e5d0d0a6b961a1ad3</originalsourceid><addsrcrecordid>eNqVks1u1DAUhSMEoqXwBggisYFFBtvxT7JBqkaFjjSiUkvXlmPfTD3NxKmdFIanx2HSqpHYIC9sXX_nyPf4JslbjBY4F_jz1g2-Vc2i61S_wAgxSuiz5BgzlmciF_T5k_NR8iqELUIU55i_TI4IL0pMCD5OzEWr3QZaq9Nz8B2Ee-uHkF73trG_IaRXvYcQslVrBg0mXULTpMu9biBd3oC-7Zxt-5DWzqdndW21hbZP1_s-2l1C11iteuva18mLWjUB3kz7SXL99ezH8jxbX3xbLU_XmeYC91mRa1yLgiEtKoKYoFVtKAPDS12zslJGE10iBCwvKpSXBJhBBilelRwrrEx-krw_-HaNC3IKKEgsBCUEIZRHYnUgjFNb2Xm7U34vnbLyb8H5jVQ-vr4BSZCoWVEIXnBKTZ0XRBnMKzXmJpiuold28Ao_oRuqmdtUuo0nkAwJTMvIf5leN1Q7MDpG5VUzk81vWnsjN-5eUsEKzopo8HEy8O5ugNDLnQ06_ohqwQ1jn1yg2ConEf1wQDcqtmLb2kVHPeLylMaWSi7EmMbiH1RcBnZWuxZqG-szwaeZIDI9_Oo3aghBrq4u_4P9PmfpgdXeheChfkwFIzlO-8NnynHa5TTtUfbuaaKPoofxzv8Axwr8fw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767074262</pqid></control><display><type>article</type><title>Oncogenic Herpesvirus Utilizes Stress-Induced Cell Cycle Checkpoints for Efficient Lytic Replication</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><source>PubMed Central Open Access</source><creator>Balistreri, Giuseppe ; Viiliäinen, Johanna ; Turunen, Mikko ; Diaz, Raquel ; Lyly, Lauri ; Pekkonen, Pirita ; Rantala, Juha ; Ojala, Krista ; Sarek, Grzegorz ; Teesalu, Mari ; Denisova, Oxana ; Peltonen, Karita ; Julkunen, Ilkka ; Varjosalo, Markku ; Kainov, Denis ; Kallioniemi, Olli ; Laiho, Marikki ; Taipale, Jussi ; Hautaniemi, Sampsa ; Ojala, Päivi M</creator><creatorcontrib>Balistreri, Giuseppe ; Viiliäinen, Johanna ; Turunen, Mikko ; Diaz, Raquel ; Lyly, Lauri ; Pekkonen, Pirita ; Rantala, Juha ; Ojala, Krista ; Sarek, Grzegorz ; Teesalu, Mari ; Denisova, Oxana ; Peltonen, Karita ; Julkunen, Ilkka ; Varjosalo, Markku ; Kainov, Denis ; Kallioniemi, Olli ; Laiho, Marikki ; Taipale, Jussi ; Hautaniemi, Sampsa ; Ojala, Päivi M</creatorcontrib><description>Kaposi's sarcoma herpesvirus (KSHV) causes Kaposi's sarcoma and certain lymphoproliferative malignancies. Latent infection is established in the majority of tumor cells, whereas lytic replication is reactivated in a small fraction of cells, which is important for both virus spread and disease progression. A siRNA screen for novel regulators of KSHV reactivation identified the E3 ubiquitin ligase MDM2 as a negative regulator of viral reactivation. Depletion of MDM2, a repressor of p53, favored efficient activation of the viral lytic transcription program and viral reactivation. During lytic replication cells activated a p53 response, accumulated DNA damage and arrested at G2-phase. Depletion of p21, a p53 target gene, restored cell cycle progression and thereby impaired the virus reactivation cascade delaying the onset of virus replication induced cytopathic effect. Herpesviruses are known to reactivate in response to different kinds of stress, and our study now highlights the molecular events in the stressed host cell that KSHV has evolved to utilize to ensure efficient viral lytic replication.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1005424</identifier><identifier>PMID: 26891221</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Cell cycle ; Cell Cycle Checkpoints - genetics ; Cell death ; Cell Line, Tumor ; DNA methylation ; DNA Replication ; Gene Expression Regulation, Viral - genetics ; Genetic aspects ; Health aspects ; Herpesvirus 8, Human - genetics ; Herpesviruses ; Humans ; Kaposis sarcoma ; Kinases ; Oncogenic viruses ; Research and Analysis Methods ; RNA, Small Interfering - genetics ; Sarcoma, Kaposi - metabolism ; Sarcoma, Kaposi - virology ; Stress, Physiological - genetics ; Tumor proteins ; Virus Activation - physiology ; Virus Latency - genetics ; Virus replication ; Virus Replication - genetics</subject><ispartof>PLOS PATHOGENS, 2016-02, Vol.12 (2), p.e1005424-e1005424</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Balistreri et al 2016 Balistreri et al</rights><rights>2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Balistreri G, Viiliäinen J, Turunen M, Diaz R, Lyly L, Pekkonen P, et al. (2016) Oncogenic Herpesvirus Utilizes Stress-Induced Cell Cycle Checkpoints for Efficient Lytic Replication. PLoS Pathog 12(2): e1005424. doi:10.1371/journal.ppat.1005424</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c671t-83c1f7850c7b20574bfd45ed69cf59badc2c900e538b0392e5d0d0a6b961a1ad3</citedby><cites>FETCH-LOGICAL-c671t-83c1f7850c7b20574bfd45ed69cf59badc2c900e538b0392e5d0d0a6b961a1ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4758658/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4758658/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26891221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:133798909$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Balistreri, Giuseppe</creatorcontrib><creatorcontrib>Viiliäinen, Johanna</creatorcontrib><creatorcontrib>Turunen, Mikko</creatorcontrib><creatorcontrib>Diaz, Raquel</creatorcontrib><creatorcontrib>Lyly, Lauri</creatorcontrib><creatorcontrib>Pekkonen, Pirita</creatorcontrib><creatorcontrib>Rantala, Juha</creatorcontrib><creatorcontrib>Ojala, Krista</creatorcontrib><creatorcontrib>Sarek, Grzegorz</creatorcontrib><creatorcontrib>Teesalu, Mari</creatorcontrib><creatorcontrib>Denisova, Oxana</creatorcontrib><creatorcontrib>Peltonen, Karita</creatorcontrib><creatorcontrib>Julkunen, Ilkka</creatorcontrib><creatorcontrib>Varjosalo, Markku</creatorcontrib><creatorcontrib>Kainov, Denis</creatorcontrib><creatorcontrib>Kallioniemi, Olli</creatorcontrib><creatorcontrib>Laiho, Marikki</creatorcontrib><creatorcontrib>Taipale, Jussi</creatorcontrib><creatorcontrib>Hautaniemi, Sampsa</creatorcontrib><creatorcontrib>Ojala, Päivi M</creatorcontrib><title>Oncogenic Herpesvirus Utilizes Stress-Induced Cell Cycle Checkpoints for Efficient Lytic Replication</title><title>PLOS PATHOGENS</title><addtitle>PLoS Pathog</addtitle><description>Kaposi's sarcoma herpesvirus (KSHV) causes Kaposi's sarcoma and certain lymphoproliferative malignancies. Latent infection is established in the majority of tumor cells, whereas lytic replication is reactivated in a small fraction of cells, which is important for both virus spread and disease progression. A siRNA screen for novel regulators of KSHV reactivation identified the E3 ubiquitin ligase MDM2 as a negative regulator of viral reactivation. Depletion of MDM2, a repressor of p53, favored efficient activation of the viral lytic transcription program and viral reactivation. During lytic replication cells activated a p53 response, accumulated DNA damage and arrested at G2-phase. Depletion of p21, a p53 target gene, restored cell cycle progression and thereby impaired the virus reactivation cascade delaying the onset of virus replication induced cytopathic effect. Herpesviruses are known to reactivate in response to different kinds of stress, and our study now highlights the molecular events in the stressed host cell that KSHV has evolved to utilize to ensure efficient viral lytic replication.</description><subject>Biology and Life Sciences</subject><subject>Cell cycle</subject><subject>Cell Cycle Checkpoints - genetics</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>DNA methylation</subject><subject>DNA Replication</subject><subject>Gene Expression Regulation, Viral - genetics</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Herpesvirus 8, Human - genetics</subject><subject>Herpesviruses</subject><subject>Humans</subject><subject>Kaposis sarcoma</subject><subject>Kinases</subject><subject>Oncogenic viruses</subject><subject>Research and Analysis Methods</subject><subject>RNA, Small Interfering - genetics</subject><subject>Sarcoma, Kaposi - metabolism</subject><subject>Sarcoma, Kaposi - virology</subject><subject>Stress, Physiological - genetics</subject><subject>Tumor proteins</subject><subject>Virus Activation - physiology</subject><subject>Virus Latency - genetics</subject><subject>Virus replication</subject><subject>Virus Replication - genetics</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqVks1u1DAUhSMEoqXwBggisYFFBtvxT7JBqkaFjjSiUkvXlmPfTD3NxKmdFIanx2HSqpHYIC9sXX_nyPf4JslbjBY4F_jz1g2-Vc2i61S_wAgxSuiz5BgzlmciF_T5k_NR8iqELUIU55i_TI4IL0pMCD5OzEWr3QZaq9Nz8B2Ee-uHkF73trG_IaRXvYcQslVrBg0mXULTpMu9biBd3oC-7Zxt-5DWzqdndW21hbZP1_s-2l1C11iteuva18mLWjUB3kz7SXL99ezH8jxbX3xbLU_XmeYC91mRa1yLgiEtKoKYoFVtKAPDS12zslJGE10iBCwvKpSXBJhBBilelRwrrEx-krw_-HaNC3IKKEgsBCUEIZRHYnUgjFNb2Xm7U34vnbLyb8H5jVQ-vr4BSZCoWVEIXnBKTZ0XRBnMKzXmJpiuold28Ao_oRuqmdtUuo0nkAwJTMvIf5leN1Q7MDpG5VUzk81vWnsjN-5eUsEKzopo8HEy8O5ugNDLnQ06_ohqwQ1jn1yg2ConEf1wQDcqtmLb2kVHPeLylMaWSi7EmMbiH1RcBnZWuxZqG-szwaeZIDI9_Oo3aghBrq4u_4P9PmfpgdXeheChfkwFIzlO-8NnynHa5TTtUfbuaaKPoofxzv8Axwr8fw</recordid><startdate>20160218</startdate><enddate>20160218</enddate><creator>Balistreri, Giuseppe</creator><creator>Viiliäinen, Johanna</creator><creator>Turunen, Mikko</creator><creator>Diaz, Raquel</creator><creator>Lyly, Lauri</creator><creator>Pekkonen, Pirita</creator><creator>Rantala, Juha</creator><creator>Ojala, Krista</creator><creator>Sarek, Grzegorz</creator><creator>Teesalu, Mari</creator><creator>Denisova, Oxana</creator><creator>Peltonen, Karita</creator><creator>Julkunen, Ilkka</creator><creator>Varjosalo, Markku</creator><creator>Kainov, Denis</creator><creator>Kallioniemi, Olli</creator><creator>Laiho, Marikki</creator><creator>Taipale, Jussi</creator><creator>Hautaniemi, Sampsa</creator><creator>Ojala, Päivi M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20160218</creationdate><title>Oncogenic Herpesvirus Utilizes Stress-Induced Cell Cycle Checkpoints for Efficient Lytic Replication</title><author>Balistreri, Giuseppe ; Viiliäinen, Johanna ; Turunen, Mikko ; Diaz, Raquel ; Lyly, Lauri ; Pekkonen, Pirita ; Rantala, Juha ; Ojala, Krista ; Sarek, Grzegorz ; Teesalu, Mari ; Denisova, Oxana ; Peltonen, Karita ; Julkunen, Ilkka ; Varjosalo, Markku ; Kainov, Denis ; Kallioniemi, Olli ; Laiho, Marikki ; Taipale, Jussi ; Hautaniemi, Sampsa ; Ojala, Päivi M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c671t-83c1f7850c7b20574bfd45ed69cf59badc2c900e538b0392e5d0d0a6b961a1ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biology and Life Sciences</topic><topic>Cell cycle</topic><topic>Cell Cycle Checkpoints - genetics</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>DNA methylation</topic><topic>DNA Replication</topic><topic>Gene Expression Regulation, Viral - genetics</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Herpesvirus 8, Human - genetics</topic><topic>Herpesviruses</topic><topic>Humans</topic><topic>Kaposis sarcoma</topic><topic>Kinases</topic><topic>Oncogenic viruses</topic><topic>Research and Analysis Methods</topic><topic>RNA, Small Interfering - genetics</topic><topic>Sarcoma, Kaposi - metabolism</topic><topic>Sarcoma, Kaposi - virology</topic><topic>Stress, Physiological - genetics</topic><topic>Tumor proteins</topic><topic>Virus Activation - physiology</topic><topic>Virus Latency - genetics</topic><topic>Virus replication</topic><topic>Virus Replication - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balistreri, Giuseppe</creatorcontrib><creatorcontrib>Viiliäinen, Johanna</creatorcontrib><creatorcontrib>Turunen, Mikko</creatorcontrib><creatorcontrib>Diaz, Raquel</creatorcontrib><creatorcontrib>Lyly, Lauri</creatorcontrib><creatorcontrib>Pekkonen, Pirita</creatorcontrib><creatorcontrib>Rantala, Juha</creatorcontrib><creatorcontrib>Ojala, Krista</creatorcontrib><creatorcontrib>Sarek, Grzegorz</creatorcontrib><creatorcontrib>Teesalu, Mari</creatorcontrib><creatorcontrib>Denisova, Oxana</creatorcontrib><creatorcontrib>Peltonen, Karita</creatorcontrib><creatorcontrib>Julkunen, Ilkka</creatorcontrib><creatorcontrib>Varjosalo, Markku</creatorcontrib><creatorcontrib>Kainov, Denis</creatorcontrib><creatorcontrib>Kallioniemi, Olli</creatorcontrib><creatorcontrib>Laiho, Marikki</creatorcontrib><creatorcontrib>Taipale, Jussi</creatorcontrib><creatorcontrib>Hautaniemi, Sampsa</creatorcontrib><creatorcontrib>Ojala, Päivi M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLOS PATHOGENS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balistreri, Giuseppe</au><au>Viiliäinen, Johanna</au><au>Turunen, Mikko</au><au>Diaz, Raquel</au><au>Lyly, Lauri</au><au>Pekkonen, Pirita</au><au>Rantala, Juha</au><au>Ojala, Krista</au><au>Sarek, Grzegorz</au><au>Teesalu, Mari</au><au>Denisova, Oxana</au><au>Peltonen, Karita</au><au>Julkunen, Ilkka</au><au>Varjosalo, Markku</au><au>Kainov, Denis</au><au>Kallioniemi, Olli</au><au>Laiho, Marikki</au><au>Taipale, Jussi</au><au>Hautaniemi, Sampsa</au><au>Ojala, Päivi M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oncogenic Herpesvirus Utilizes Stress-Induced Cell Cycle Checkpoints for Efficient Lytic Replication</atitle><jtitle>PLOS PATHOGENS</jtitle><addtitle>PLoS Pathog</addtitle><date>2016-02-18</date><risdate>2016</risdate><volume>12</volume><issue>2</issue><spage>e1005424</spage><epage>e1005424</epage><pages>e1005424-e1005424</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Kaposi's sarcoma herpesvirus (KSHV) causes Kaposi's sarcoma and certain lymphoproliferative malignancies. Latent infection is established in the majority of tumor cells, whereas lytic replication is reactivated in a small fraction of cells, which is important for both virus spread and disease progression. A siRNA screen for novel regulators of KSHV reactivation identified the E3 ubiquitin ligase MDM2 as a negative regulator of viral reactivation. Depletion of MDM2, a repressor of p53, favored efficient activation of the viral lytic transcription program and viral reactivation. During lytic replication cells activated a p53 response, accumulated DNA damage and arrested at G2-phase. Depletion of p21, a p53 target gene, restored cell cycle progression and thereby impaired the virus reactivation cascade delaying the onset of virus replication induced cytopathic effect. Herpesviruses are known to reactivate in response to different kinds of stress, and our study now highlights the molecular events in the stressed host cell that KSHV has evolved to utilize to ensure efficient viral lytic replication.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26891221</pmid><doi>10.1371/journal.ppat.1005424</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLOS PATHOGENS, 2016-02, Vol.12 (2), p.e1005424-e1005424
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_1774220003
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; SWEPUB Freely available online; PubMed Central Open Access
subjects Biology and Life Sciences
Cell cycle
Cell Cycle Checkpoints - genetics
Cell death
Cell Line, Tumor
DNA methylation
DNA Replication
Gene Expression Regulation, Viral - genetics
Genetic aspects
Health aspects
Herpesvirus 8, Human - genetics
Herpesviruses
Humans
Kaposis sarcoma
Kinases
Oncogenic viruses
Research and Analysis Methods
RNA, Small Interfering - genetics
Sarcoma, Kaposi - metabolism
Sarcoma, Kaposi - virology
Stress, Physiological - genetics
Tumor proteins
Virus Activation - physiology
Virus Latency - genetics
Virus replication
Virus Replication - genetics
title Oncogenic Herpesvirus Utilizes Stress-Induced Cell Cycle Checkpoints for Efficient Lytic Replication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oncogenic%20Herpesvirus%20Utilizes%20Stress-Induced%20Cell%20Cycle%20Checkpoints%20for%20Efficient%20Lytic%20Replication&rft.jtitle=PLOS%20PATHOGENS&rft.au=Balistreri,%20Giuseppe&rft.date=2016-02-18&rft.volume=12&rft.issue=2&rft.spage=e1005424&rft.epage=e1005424&rft.pages=e1005424-e1005424&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1005424&rft_dat=%3Cgale_plos_%3EA476896773%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767074262&rft_id=info:pmid/26891221&rft_galeid=A476896773&rft_doaj_id=oai_doaj_org_article_207f588768644df382ad16ba122175cb&rfr_iscdi=true