Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography
With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-03, Vol.11 (3), p.e0151300-e0151300 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0151300 |
---|---|
container_issue | 3 |
container_start_page | e0151300 |
container_title | PloS one |
container_volume | 11 |
creator | Shih, Tian-Yu Wu, Jay Shih, Cheng-Ting Lee, Yao-Ting Wu, Shin-Hua Yao, Chun-Hsu Hsieh, Bor-Tsung |
description | With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation. |
doi_str_mv | 10.1371/journal.pone.0151300 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1773262820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A453471406</galeid><doaj_id>oai_doaj_org_article_9c4ff1df2f7443bd92c55ab1c43f7389</doaj_id><sourcerecordid>A453471406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-fd05f68bf732eeb092b01aa754b5b1864713dcec28b398a6172ed59dee9f627b3</originalsourceid><addsrcrecordid>eNqNk9GK1DAUhoso7jr6BqIFQfRixqRp0-ZmYZl114GVEXcVvAppe9J2SJuapOK8vanTXaayF5KLhOQ7f875kxMELzFaYZLiDzs9mE6oVa87WCGcYILQo-AUMxItaYTI46P1SfDM2h1CCckofRqcRJSlcUzi0-DHTSuUWl42oMrwMwg7GGihczbUMiQX4Ret9i2Y8ApUeKFt04IDY0NXGz1UdbjtXVMIFa512w8OyvBWt7oyoq_3z4MnUigLL6Z5EXy7_Hi7_rS83l5t1ufXy4KyyC1liRJJs1ymJALIEYtyhIVIkzhPcpzROMWkLKCIspywTFCcRlAmrARgkkZpThbB64Nur7TlkyuW49QL0ijz1S-CzYEotdjx3jStMHuuRcP_bmhTcWF8HQo4K2IpcSkjOfqTlywqkkTkuIiJTzBjXutsum3IW_CJdc4INROdn3RNzSv9i8cpQ4yOAu8mAaN_DmAdbxtbgFKiAz0c8s4wosmY95t_0Ierm6hK-AKaTmp_bzGK8vM4Id6_GFFPrR6g_CihbQr_hWTj92cB72cBnnHw21VisJZvbr7-P7v9PmffHrE1COVqq9XgGt3ZORgfwMJoaw3Ie5Mx4mMH3LnBxw7gUwf4sFfHD3QfdPflyR_GbwBp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773262820</pqid></control><display><type>article</type><title>Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Shih, Tian-Yu ; Wu, Jay ; Shih, Cheng-Ting ; Lee, Yao-Ting ; Wu, Shin-Hua ; Yao, Chun-Hsu ; Hsieh, Bor-Tsung</creator><contributor>Zeng, Li</contributor><creatorcontrib>Shih, Tian-Yu ; Wu, Jay ; Shih, Cheng-Ting ; Lee, Yao-Ting ; Wu, Shin-Hua ; Yao, Chun-Hsu ; Hsieh, Bor-Tsung ; Zeng, Li</creatorcontrib><description>With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0151300</identifier><identifier>PMID: 26974434</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acrylic Resins ; Biology and Life Sciences ; CAT scans ; Computation ; Computed tomography ; Criteria ; Dose-Response Relationship, Radiation ; Dosimeters ; Dosimetry ; Engineering and Technology ; Gelatin ; Health aspects ; Irradiation ; Light ; Measurement ; Medical imaging ; Medicine and Health Sciences ; Monomers ; NMR ; Nuclear magnetic resonance ; Physical Sciences ; Physiological aspects ; Polymers ; Polymers - chemistry ; Properties ; Radiation dosage ; Radiation therapy ; Radiometry - methods ; Research and Analysis Methods ; Science ; Studies ; Tomography, Optical - methods ; Tomography, X-Ray Computed - methods</subject><ispartof>PloS one, 2016-03, Vol.11 (3), p.e0151300-e0151300</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Shih et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Shih et al 2016 Shih et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-fd05f68bf732eeb092b01aa754b5b1864713dcec28b398a6172ed59dee9f627b3</citedby><cites>FETCH-LOGICAL-c692t-fd05f68bf732eeb092b01aa754b5b1864713dcec28b398a6172ed59dee9f627b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4790969/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4790969/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26974434$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zeng, Li</contributor><creatorcontrib>Shih, Tian-Yu</creatorcontrib><creatorcontrib>Wu, Jay</creatorcontrib><creatorcontrib>Shih, Cheng-Ting</creatorcontrib><creatorcontrib>Lee, Yao-Ting</creatorcontrib><creatorcontrib>Wu, Shin-Hua</creatorcontrib><creatorcontrib>Yao, Chun-Hsu</creatorcontrib><creatorcontrib>Hsieh, Bor-Tsung</creatorcontrib><title>Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation.</description><subject>Acrylic Resins</subject><subject>Biology and Life Sciences</subject><subject>CAT scans</subject><subject>Computation</subject><subject>Computed tomography</subject><subject>Criteria</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Dosimeters</subject><subject>Dosimetry</subject><subject>Engineering and Technology</subject><subject>Gelatin</subject><subject>Health aspects</subject><subject>Irradiation</subject><subject>Light</subject><subject>Measurement</subject><subject>Medical imaging</subject><subject>Medicine and Health Sciences</subject><subject>Monomers</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Properties</subject><subject>Radiation dosage</subject><subject>Radiation therapy</subject><subject>Radiometry - methods</subject><subject>Research and Analysis Methods</subject><subject>Science</subject><subject>Studies</subject><subject>Tomography, Optical - methods</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9GK1DAUhoso7jr6BqIFQfRixqRp0-ZmYZl114GVEXcVvAppe9J2SJuapOK8vanTXaayF5KLhOQ7f875kxMELzFaYZLiDzs9mE6oVa87WCGcYILQo-AUMxItaYTI46P1SfDM2h1CCckofRqcRJSlcUzi0-DHTSuUWl42oMrwMwg7GGihczbUMiQX4Ret9i2Y8ApUeKFt04IDY0NXGz1UdbjtXVMIFa512w8OyvBWt7oyoq_3z4MnUigLL6Z5EXy7_Hi7_rS83l5t1ufXy4KyyC1liRJJs1ymJALIEYtyhIVIkzhPcpzROMWkLKCIspywTFCcRlAmrARgkkZpThbB64Nur7TlkyuW49QL0ijz1S-CzYEotdjx3jStMHuuRcP_bmhTcWF8HQo4K2IpcSkjOfqTlywqkkTkuIiJTzBjXutsum3IW_CJdc4INROdn3RNzSv9i8cpQ4yOAu8mAaN_DmAdbxtbgFKiAz0c8s4wosmY95t_0Ierm6hK-AKaTmp_bzGK8vM4Id6_GFFPrR6g_CihbQr_hWTj92cB72cBnnHw21VisJZvbr7-P7v9PmffHrE1COVqq9XgGt3ZORgfwMJoaw3Ie5Mx4mMH3LnBxw7gUwf4sFfHD3QfdPflyR_GbwBp</recordid><startdate>20160314</startdate><enddate>20160314</enddate><creator>Shih, Tian-Yu</creator><creator>Wu, Jay</creator><creator>Shih, Cheng-Ting</creator><creator>Lee, Yao-Ting</creator><creator>Wu, Shin-Hua</creator><creator>Yao, Chun-Hsu</creator><creator>Hsieh, Bor-Tsung</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160314</creationdate><title>Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography</title><author>Shih, Tian-Yu ; Wu, Jay ; Shih, Cheng-Ting ; Lee, Yao-Ting ; Wu, Shin-Hua ; Yao, Chun-Hsu ; Hsieh, Bor-Tsung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-fd05f68bf732eeb092b01aa754b5b1864713dcec28b398a6172ed59dee9f627b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acrylic Resins</topic><topic>Biology and Life Sciences</topic><topic>CAT scans</topic><topic>Computation</topic><topic>Computed tomography</topic><topic>Criteria</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Dosimeters</topic><topic>Dosimetry</topic><topic>Engineering and Technology</topic><topic>Gelatin</topic><topic>Health aspects</topic><topic>Irradiation</topic><topic>Light</topic><topic>Measurement</topic><topic>Medical imaging</topic><topic>Medicine and Health Sciences</topic><topic>Monomers</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Properties</topic><topic>Radiation dosage</topic><topic>Radiation therapy</topic><topic>Radiometry - methods</topic><topic>Research and Analysis Methods</topic><topic>Science</topic><topic>Studies</topic><topic>Tomography, Optical - methods</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shih, Tian-Yu</creatorcontrib><creatorcontrib>Wu, Jay</creatorcontrib><creatorcontrib>Shih, Cheng-Ting</creatorcontrib><creatorcontrib>Lee, Yao-Ting</creatorcontrib><creatorcontrib>Wu, Shin-Hua</creatorcontrib><creatorcontrib>Yao, Chun-Hsu</creatorcontrib><creatorcontrib>Hsieh, Bor-Tsung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shih, Tian-Yu</au><au>Wu, Jay</au><au>Shih, Cheng-Ting</au><au>Lee, Yao-Ting</au><au>Wu, Shin-Hua</au><au>Yao, Chun-Hsu</au><au>Hsieh, Bor-Tsung</au><au>Zeng, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-03-14</date><risdate>2016</risdate><volume>11</volume><issue>3</issue><spage>e0151300</spage><epage>e0151300</epage><pages>e0151300-e0151300</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26974434</pmid><doi>10.1371/journal.pone.0151300</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-03, Vol.11 (3), p.e0151300-e0151300 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1773262820 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acrylic Resins Biology and Life Sciences CAT scans Computation Computed tomography Criteria Dose-Response Relationship, Radiation Dosimeters Dosimetry Engineering and Technology Gelatin Health aspects Irradiation Light Measurement Medical imaging Medicine and Health Sciences Monomers NMR Nuclear magnetic resonance Physical Sciences Physiological aspects Polymers Polymers - chemistry Properties Radiation dosage Radiation therapy Radiometry - methods Research and Analysis Methods Science Studies Tomography, Optical - methods Tomography, X-Ray Computed - methods |
title | Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small-Field%20Measurements%20of%203D%20Polymer%20Gel%20Dosimeters%20through%20Optical%20Computed%20Tomography&rft.jtitle=PloS%20one&rft.au=Shih,%20Tian-Yu&rft.date=2016-03-14&rft.volume=11&rft.issue=3&rft.spage=e0151300&rft.epage=e0151300&rft.pages=e0151300-e0151300&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0151300&rft_dat=%3Cgale_plos_%3EA453471406%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1773262820&rft_id=info:pmid/26974434&rft_galeid=A453471406&rft_doaj_id=oai_doaj_org_article_9c4ff1df2f7443bd92c55ab1c43f7389&rfr_iscdi=true |