Seeking Optimal Region-Of-Interest (ROI) Single-Value Summary Measures for fMRI Studies in Imaging Genetics

A data-driven hypothesis-free genome-wide association (GWA) approach in imaging genetics studies allows screening the entire genome to discover novel genes that modulate brain structure, chemistry, and function. However, a whole brain voxel-wise analysis approach in such genome-wide based imaging ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-03, Vol.11 (3), p.e0151391-e0151391
Hauptverfasser: Tong, Yunxia, Chen, Qiang, Nichols, Thomas E, Rasetti, Roberta, Callicott, Joseph H, Berman, Karen F, Weinberger, Daniel R, Mattay, Venkata S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0151391
container_issue 3
container_start_page e0151391
container_title PloS one
container_volume 11
creator Tong, Yunxia
Chen, Qiang
Nichols, Thomas E
Rasetti, Roberta
Callicott, Joseph H
Berman, Karen F
Weinberger, Daniel R
Mattay, Venkata S
description A data-driven hypothesis-free genome-wide association (GWA) approach in imaging genetics studies allows screening the entire genome to discover novel genes that modulate brain structure, chemistry, and function. However, a whole brain voxel-wise analysis approach in such genome-wide based imaging genetic studies can be computationally intense and also likely has low statistical power since a stringent multiple comparisons correction is needed for searching over the entire genome and brain. In imaging genetics with functional magnetic resonance imaging (fMRI) phenotypes, since many experimental paradigms activate focal regions that can be pre-specified based on a priori knowledge, reducing the voxel-wise search to single-value summary measures within a priori ROIs could prove efficient and promising. The goal of this investigation is to evaluate the sensitivity and reliability of different single-value ROI summary measures and provide guidance in future work. Four different fMRI databases were tested and comparisons across different groups (patients with schizophrenia, their siblings, vs. normal control subjects; across genotype groups) were conducted. Our results show that four of these measures, particularly those that represent values from the top most-activated voxels within an ROI are more powerful at reliably detecting group differences and generating greater effect sizes than the others.
doi_str_mv 10.1371/journal.pone.0151391
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1773262806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A453471389</galeid><doaj_id>oai_doaj_org_article_86254d7c096e4ab78ff3bfb1e25509e5</doaj_id><sourcerecordid>A453471389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c719t-26d95be1c34ac89507a60b5fb8d77f317cdc334258a738601b2353b27b6180323</originalsourceid><addsrcrecordid>eNqNkl9v0zAUxSMEYmPwDRBEQkLbQ4r_xHH8gjRNMCJtqtTCXi3HuUnTOXGxEwTfHpdmU4N44MnW9e8e-1yfKHqN0QJTjj9s7eh6ZRY728MCYYapwE-iUywoSTKC6NOj_Un0wvstQozmWfY8OiGZ4GlK2Wl0vwa4b_smXu6GtlMmXkHT2j5Z1knRD-DAD_H5allcxOtAGUjulBkhXo9dp9yv-BaUHwMU19bF9e2qiNfDWLWh0PZx0almL30NPQyt9i-jZ7UyHl5N61n07fOnr1dfkpvldXF1eZNojsWQkKwSrASsaap0LhjiKkMlq8u84rymmOtKU5oSlise_CBcEspoSXiZ4RxRQs-itwfdnbFeTnPyEnNOSUZylAWiOBCVVVu5c-3ejLSqlX8K1jVSufBkAzLPCEsrrpHIIFUlz-ualnWJgTCGBLCg9XG6bSw7qDT0g1NmJjo_6duNbOwPmXKBBEqDwPkk4Oz3MQxcdq3XYIzqwY6Hd-cYCUID-u4v9N_uJqpRwUDb1zbcq_ei8jJlNOWY5iJQFzNK2_DfP4dGjd7LYr36f3Z5N2ffH7EbUGbYeGvGIcTKz8H0AGpnvXdQP84MI7mP-IM5uY-4nCIe2t4cz_ux6SHT9Dfr_PR3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773262806</pqid></control><display><type>article</type><title>Seeking Optimal Region-Of-Interest (ROI) Single-Value Summary Measures for fMRI Studies in Imaging Genetics</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Tong, Yunxia ; Chen, Qiang ; Nichols, Thomas E ; Rasetti, Roberta ; Callicott, Joseph H ; Berman, Karen F ; Weinberger, Daniel R ; Mattay, Venkata S</creator><creatorcontrib>Tong, Yunxia ; Chen, Qiang ; Nichols, Thomas E ; Rasetti, Roberta ; Callicott, Joseph H ; Berman, Karen F ; Weinberger, Daniel R ; Mattay, Venkata S</creatorcontrib><description>A data-driven hypothesis-free genome-wide association (GWA) approach in imaging genetics studies allows screening the entire genome to discover novel genes that modulate brain structure, chemistry, and function. However, a whole brain voxel-wise analysis approach in such genome-wide based imaging genetic studies can be computationally intense and also likely has low statistical power since a stringent multiple comparisons correction is needed for searching over the entire genome and brain. In imaging genetics with functional magnetic resonance imaging (fMRI) phenotypes, since many experimental paradigms activate focal regions that can be pre-specified based on a priori knowledge, reducing the voxel-wise search to single-value summary measures within a priori ROIs could prove efficient and promising. The goal of this investigation is to evaluate the sensitivity and reliability of different single-value ROI summary measures and provide guidance in future work. Four different fMRI databases were tested and comparisons across different groups (patients with schizophrenia, their siblings, vs. normal control subjects; across genotype groups) were conducted. Our results show that four of these measures, particularly those that represent values from the top most-activated voxels within an ROI are more powerful at reliably detecting group differences and generating greater effect sizes than the others.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0151391</identifier><identifier>PMID: 26974435</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Biology and Life Sciences ; Brain ; Brain mapping ; Brain research ; Databases as Topic ; Demography ; Functional anatomy ; Functional magnetic resonance imaging ; Genes ; Genetic aspects ; Genetic research ; Genetics ; Genomes ; Genotype ; Genotypes ; Humans ; Imaging, Three-Dimensional ; Information technology ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical imaging ; Medicine and Health Sciences ; Mental disorders ; Mental health ; Neuroimaging ; Neurosciences ; NMR ; Nuclear magnetic resonance ; Physical Sciences ; Physiology ; Psychiatry ; Reliability analysis ; Reproducibility of Results ; Research and Analysis Methods ; Schizophrenia ; Sensitivity analysis ; Social Sciences ; Structure-function relationships ; Studies ; Time series</subject><ispartof>PloS one, 2016-03, Vol.11 (3), p.e0151391-e0151391</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c719t-26d95be1c34ac89507a60b5fb8d77f317cdc334258a738601b2353b27b6180323</citedby><cites>FETCH-LOGICAL-c719t-26d95be1c34ac89507a60b5fb8d77f317cdc334258a738601b2353b27b6180323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4790904/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4790904/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26974435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tong, Yunxia</creatorcontrib><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Nichols, Thomas E</creatorcontrib><creatorcontrib>Rasetti, Roberta</creatorcontrib><creatorcontrib>Callicott, Joseph H</creatorcontrib><creatorcontrib>Berman, Karen F</creatorcontrib><creatorcontrib>Weinberger, Daniel R</creatorcontrib><creatorcontrib>Mattay, Venkata S</creatorcontrib><title>Seeking Optimal Region-Of-Interest (ROI) Single-Value Summary Measures for fMRI Studies in Imaging Genetics</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>A data-driven hypothesis-free genome-wide association (GWA) approach in imaging genetics studies allows screening the entire genome to discover novel genes that modulate brain structure, chemistry, and function. However, a whole brain voxel-wise analysis approach in such genome-wide based imaging genetic studies can be computationally intense and also likely has low statistical power since a stringent multiple comparisons correction is needed for searching over the entire genome and brain. In imaging genetics with functional magnetic resonance imaging (fMRI) phenotypes, since many experimental paradigms activate focal regions that can be pre-specified based on a priori knowledge, reducing the voxel-wise search to single-value summary measures within a priori ROIs could prove efficient and promising. The goal of this investigation is to evaluate the sensitivity and reliability of different single-value ROI summary measures and provide guidance in future work. Four different fMRI databases were tested and comparisons across different groups (patients with schizophrenia, their siblings, vs. normal control subjects; across genotype groups) were conducted. Our results show that four of these measures, particularly those that represent values from the top most-activated voxels within an ROI are more powerful at reliably detecting group differences and generating greater effect sizes than the others.</description><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain mapping</subject><subject>Brain research</subject><subject>Databases as Topic</subject><subject>Demography</subject><subject>Functional anatomy</subject><subject>Functional magnetic resonance imaging</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional</subject><subject>Information technology</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging</subject><subject>Medicine and Health Sciences</subject><subject>Mental disorders</subject><subject>Mental health</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Psychiatry</subject><subject>Reliability analysis</subject><subject>Reproducibility of Results</subject><subject>Research and Analysis Methods</subject><subject>Schizophrenia</subject><subject>Sensitivity analysis</subject><subject>Social Sciences</subject><subject>Structure-function relationships</subject><subject>Studies</subject><subject>Time series</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl9v0zAUxSMEYmPwDRBEQkLbQ4r_xHH8gjRNMCJtqtTCXi3HuUnTOXGxEwTfHpdmU4N44MnW9e8e-1yfKHqN0QJTjj9s7eh6ZRY728MCYYapwE-iUywoSTKC6NOj_Un0wvstQozmWfY8OiGZ4GlK2Wl0vwa4b_smXu6GtlMmXkHT2j5Z1knRD-DAD_H5allcxOtAGUjulBkhXo9dp9yv-BaUHwMU19bF9e2qiNfDWLWh0PZx0almL30NPQyt9i-jZ7UyHl5N61n07fOnr1dfkpvldXF1eZNojsWQkKwSrASsaap0LhjiKkMlq8u84rymmOtKU5oSlise_CBcEspoSXiZ4RxRQs-itwfdnbFeTnPyEnNOSUZylAWiOBCVVVu5c-3ejLSqlX8K1jVSufBkAzLPCEsrrpHIIFUlz-ualnWJgTCGBLCg9XG6bSw7qDT0g1NmJjo_6duNbOwPmXKBBEqDwPkk4Oz3MQxcdq3XYIzqwY6Hd-cYCUID-u4v9N_uJqpRwUDb1zbcq_ei8jJlNOWY5iJQFzNK2_DfP4dGjd7LYr36f3Z5N2ffH7EbUGbYeGvGIcTKz8H0AGpnvXdQP84MI7mP-IM5uY-4nCIe2t4cz_ux6SHT9Dfr_PR3</recordid><startdate>20160314</startdate><enddate>20160314</enddate><creator>Tong, Yunxia</creator><creator>Chen, Qiang</creator><creator>Nichols, Thomas E</creator><creator>Rasetti, Roberta</creator><creator>Callicott, Joseph H</creator><creator>Berman, Karen F</creator><creator>Weinberger, Daniel R</creator><creator>Mattay, Venkata S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160314</creationdate><title>Seeking Optimal Region-Of-Interest (ROI) Single-Value Summary Measures for fMRI Studies in Imaging Genetics</title><author>Tong, Yunxia ; Chen, Qiang ; Nichols, Thomas E ; Rasetti, Roberta ; Callicott, Joseph H ; Berman, Karen F ; Weinberger, Daniel R ; Mattay, Venkata S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c719t-26d95be1c34ac89507a60b5fb8d77f317cdc334258a738601b2353b27b6180323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain mapping</topic><topic>Brain research</topic><topic>Databases as Topic</topic><topic>Demography</topic><topic>Functional anatomy</topic><topic>Functional magnetic resonance imaging</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional</topic><topic>Information technology</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging</topic><topic>Medicine and Health Sciences</topic><topic>Mental disorders</topic><topic>Mental health</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Psychiatry</topic><topic>Reliability analysis</topic><topic>Reproducibility of Results</topic><topic>Research and Analysis Methods</topic><topic>Schizophrenia</topic><topic>Sensitivity analysis</topic><topic>Social Sciences</topic><topic>Structure-function relationships</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Yunxia</creatorcontrib><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Nichols, Thomas E</creatorcontrib><creatorcontrib>Rasetti, Roberta</creatorcontrib><creatorcontrib>Callicott, Joseph H</creatorcontrib><creatorcontrib>Berman, Karen F</creatorcontrib><creatorcontrib>Weinberger, Daniel R</creatorcontrib><creatorcontrib>Mattay, Venkata S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Yunxia</au><au>Chen, Qiang</au><au>Nichols, Thomas E</au><au>Rasetti, Roberta</au><au>Callicott, Joseph H</au><au>Berman, Karen F</au><au>Weinberger, Daniel R</au><au>Mattay, Venkata S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seeking Optimal Region-Of-Interest (ROI) Single-Value Summary Measures for fMRI Studies in Imaging Genetics</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-03-14</date><risdate>2016</risdate><volume>11</volume><issue>3</issue><spage>e0151391</spage><epage>e0151391</epage><pages>e0151391-e0151391</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>A data-driven hypothesis-free genome-wide association (GWA) approach in imaging genetics studies allows screening the entire genome to discover novel genes that modulate brain structure, chemistry, and function. However, a whole brain voxel-wise analysis approach in such genome-wide based imaging genetic studies can be computationally intense and also likely has low statistical power since a stringent multiple comparisons correction is needed for searching over the entire genome and brain. In imaging genetics with functional magnetic resonance imaging (fMRI) phenotypes, since many experimental paradigms activate focal regions that can be pre-specified based on a priori knowledge, reducing the voxel-wise search to single-value summary measures within a priori ROIs could prove efficient and promising. The goal of this investigation is to evaluate the sensitivity and reliability of different single-value ROI summary measures and provide guidance in future work. Four different fMRI databases were tested and comparisons across different groups (patients with schizophrenia, their siblings, vs. normal control subjects; across genotype groups) were conducted. Our results show that four of these measures, particularly those that represent values from the top most-activated voxels within an ROI are more powerful at reliably detecting group differences and generating greater effect sizes than the others.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26974435</pmid><doi>10.1371/journal.pone.0151391</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-03, Vol.11 (3), p.e0151391-e0151391
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1773262806
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Analysis
Biology and Life Sciences
Brain
Brain mapping
Brain research
Databases as Topic
Demography
Functional anatomy
Functional magnetic resonance imaging
Genes
Genetic aspects
Genetic research
Genetics
Genomes
Genotype
Genotypes
Humans
Imaging, Three-Dimensional
Information technology
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Medicine and Health Sciences
Mental disorders
Mental health
Neuroimaging
Neurosciences
NMR
Nuclear magnetic resonance
Physical Sciences
Physiology
Psychiatry
Reliability analysis
Reproducibility of Results
Research and Analysis Methods
Schizophrenia
Sensitivity analysis
Social Sciences
Structure-function relationships
Studies
Time series
title Seeking Optimal Region-Of-Interest (ROI) Single-Value Summary Measures for fMRI Studies in Imaging Genetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T12%3A02%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seeking%20Optimal%20Region-Of-Interest%20(ROI)%20Single-Value%20Summary%20Measures%20for%20fMRI%20Studies%20in%20Imaging%20Genetics&rft.jtitle=PloS%20one&rft.au=Tong,%20Yunxia&rft.date=2016-03-14&rft.volume=11&rft.issue=3&rft.spage=e0151391&rft.epage=e0151391&rft.pages=e0151391-e0151391&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0151391&rft_dat=%3Cgale_plos_%3EA453471389%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1773262806&rft_id=info:pmid/26974435&rft_galeid=A453471389&rft_doaj_id=oai_doaj_org_article_86254d7c096e4ab78ff3bfb1e25509e5&rfr_iscdi=true