A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm

In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-03, Vol.11 (3), p.e0150005-e0150005
Hauptverfasser: Song, Jiancai, Xue, Guixiang, Kang, Yanan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0150005
container_issue 3
container_start_page e0150005
container_title PloS one
container_volume 11
creator Song, Jiancai
Xue, Guixiang
Kang, Yanan
description In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 ∼ n) while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM) or fault detection and exclusion (FDE). This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones.
doi_str_mv 10.1371/journal.pone.0150005
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1770505037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A445095591</galeid><doaj_id>oai_doaj_org_article_c26b3af5f1804d3fb7ea14cea17dc522</doaj_id><sourcerecordid>A445095591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-10fe9b67e0c8fba8874679f2e34aaadb8aa0dfd775a1d1061ab18cf465be1d7b3</originalsourceid><addsrcrecordid>eNqNk9tuEzEQhlcIREvhDRBYQkJwkWDvybs3lUIFIVJLEAFurVl7nLjyrsPaW9G3xzm0SlAvkCUfv_lnPPYkyUtGxyzj7MO1G_oO7HjtOhxTVlBKi0fJKauzdFSmNHt8MD9Jnnl_HYGsKsunyUla1nlWZtVp0k3IV3eDllxhWDlFtOvJfB1MO7Rkal0Dlnxz3gTjOtMtyeLWB2zJAgJaawKSBVqUm1PyETwqEidArpwy2sTVFDsMRpKJXbrehFX7PHmiwXp8sR_Pkp-fP_24-DK6nE9nF5PLkSzrNIwY1Vg3JUcqK91AVfG85LVOMcsBQDUVAFVacV4AU4yWDBpWSZ2XRYNM8SY7S17vdNfWebFPlReMc1rElvFIzHaEcnAt1r1pob8VDozYbrh-KaCPsVsUMi2bDHShWUVzlemGI7Bcxo4rWaRp1DrfexuaFpXELvRgj0SPTzqzEkt3I3LOq3or8G4v0LvfA_ogWuNlTDF06IZt3CzPOaV1RN_8gz58uz21hHgB02kX_cqNqJjkeUHroqhZpMYPULEpbI2M_0qbuH9k8P7IIDIB_4QlDN6L2eL7_7PzX8fs2wN2hWDDyjs7bD6WPwbzHSh7532P-j7JjIpNWdxlQ2zKQuzLIpq9Onyge6O7Osj-Ag9ACMA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770505037</pqid></control><display><type>article</type><title>A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Song, Jiancai ; Xue, Guixiang ; Kang, Yanan</creator><contributor>Wang, Yuanquan</contributor><creatorcontrib>Song, Jiancai ; Xue, Guixiang ; Kang, Yanan ; Wang, Yuanquan</creatorcontrib><description>In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 ∼ n) while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM) or fault detection and exclusion (FDE). This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0150005</identifier><identifier>PMID: 26943638</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Adaptive algorithms ; Algorithms ; Applied mathematics ; Biology and Life Sciences ; Cellular telephones ; Classification ; Computer and Information Sciences ; Computer science ; Computer Simulation ; Conservation ; Coordinate transformations ; Dilution ; Eigen values ; Eigenvalues ; Engineering and Technology ; Fault detection ; Genetic algorithms ; Geographic Information Systems ; Geometric dilution of precision ; Geometry ; Global Positioning System ; Global positioning systems ; GPS ; International conferences ; Linear algebra ; Methods ; Mutation ; Navigation satellites ; Neural networks ; Optimization ; Physical Sciences ; Point Mutation ; Principal components analysis ; Research and Analysis Methods ; Satellite Communications ; Satellite navigation systems ; Satellites ; Set theory</subject><ispartof>PloS one, 2016-03, Vol.11 (3), p.e0150005-e0150005</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Song et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Song et al 2016 Song et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-10fe9b67e0c8fba8874679f2e34aaadb8aa0dfd775a1d1061ab18cf465be1d7b3</citedby><cites>FETCH-LOGICAL-c692t-10fe9b67e0c8fba8874679f2e34aaadb8aa0dfd775a1d1061ab18cf465be1d7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778922/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778922/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26943638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wang, Yuanquan</contributor><creatorcontrib>Song, Jiancai</creatorcontrib><creatorcontrib>Xue, Guixiang</creatorcontrib><creatorcontrib>Kang, Yanan</creatorcontrib><title>A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 ∼ n) while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM) or fault detection and exclusion (FDE). This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones.</description><subject>Accuracy</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Biology and Life Sciences</subject><subject>Cellular telephones</subject><subject>Classification</subject><subject>Computer and Information Sciences</subject><subject>Computer science</subject><subject>Computer Simulation</subject><subject>Conservation</subject><subject>Coordinate transformations</subject><subject>Dilution</subject><subject>Eigen values</subject><subject>Eigenvalues</subject><subject>Engineering and Technology</subject><subject>Fault detection</subject><subject>Genetic algorithms</subject><subject>Geographic Information Systems</subject><subject>Geometric dilution of precision</subject><subject>Geometry</subject><subject>Global Positioning System</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>International conferences</subject><subject>Linear algebra</subject><subject>Methods</subject><subject>Mutation</subject><subject>Navigation satellites</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Physical Sciences</subject><subject>Point Mutation</subject><subject>Principal components analysis</subject><subject>Research and Analysis Methods</subject><subject>Satellite Communications</subject><subject>Satellite navigation systems</subject><subject>Satellites</subject><subject>Set theory</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tuEzEQhlcIREvhDRBYQkJwkWDvybs3lUIFIVJLEAFurVl7nLjyrsPaW9G3xzm0SlAvkCUfv_lnPPYkyUtGxyzj7MO1G_oO7HjtOhxTVlBKi0fJKauzdFSmNHt8MD9Jnnl_HYGsKsunyUla1nlWZtVp0k3IV3eDllxhWDlFtOvJfB1MO7Rkal0Dlnxz3gTjOtMtyeLWB2zJAgJaawKSBVqUm1PyETwqEidArpwy2sTVFDsMRpKJXbrehFX7PHmiwXp8sR_Pkp-fP_24-DK6nE9nF5PLkSzrNIwY1Vg3JUcqK91AVfG85LVOMcsBQDUVAFVacV4AU4yWDBpWSZ2XRYNM8SY7S17vdNfWebFPlReMc1rElvFIzHaEcnAt1r1pob8VDozYbrh-KaCPsVsUMi2bDHShWUVzlemGI7Bcxo4rWaRp1DrfexuaFpXELvRgj0SPTzqzEkt3I3LOq3or8G4v0LvfA_ogWuNlTDF06IZt3CzPOaV1RN_8gz58uz21hHgB02kX_cqNqJjkeUHroqhZpMYPULEpbI2M_0qbuH9k8P7IIDIB_4QlDN6L2eL7_7PzX8fs2wN2hWDDyjs7bD6WPwbzHSh7532P-j7JjIpNWdxlQ2zKQuzLIpq9Onyge6O7Osj-Ag9ACMA</recordid><startdate>20160304</startdate><enddate>20160304</enddate><creator>Song, Jiancai</creator><creator>Xue, Guixiang</creator><creator>Kang, Yanan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160304</creationdate><title>A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm</title><author>Song, Jiancai ; Xue, Guixiang ; Kang, Yanan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-10fe9b67e0c8fba8874679f2e34aaadb8aa0dfd775a1d1061ab18cf465be1d7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Biology and Life Sciences</topic><topic>Cellular telephones</topic><topic>Classification</topic><topic>Computer and Information Sciences</topic><topic>Computer science</topic><topic>Computer Simulation</topic><topic>Conservation</topic><topic>Coordinate transformations</topic><topic>Dilution</topic><topic>Eigen values</topic><topic>Eigenvalues</topic><topic>Engineering and Technology</topic><topic>Fault detection</topic><topic>Genetic algorithms</topic><topic>Geographic Information Systems</topic><topic>Geometric dilution of precision</topic><topic>Geometry</topic><topic>Global Positioning System</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>International conferences</topic><topic>Linear algebra</topic><topic>Methods</topic><topic>Mutation</topic><topic>Navigation satellites</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Physical Sciences</topic><topic>Point Mutation</topic><topic>Principal components analysis</topic><topic>Research and Analysis Methods</topic><topic>Satellite Communications</topic><topic>Satellite navigation systems</topic><topic>Satellites</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Jiancai</creatorcontrib><creatorcontrib>Xue, Guixiang</creatorcontrib><creatorcontrib>Kang, Yanan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Jiancai</au><au>Xue, Guixiang</au><au>Kang, Yanan</au><au>Wang, Yuanquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-03-04</date><risdate>2016</risdate><volume>11</volume><issue>3</issue><spage>e0150005</spage><epage>e0150005</epage><pages>e0150005-e0150005</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 ∼ n) while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM) or fault detection and exclusion (FDE). This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26943638</pmid><doi>10.1371/journal.pone.0150005</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-03, Vol.11 (3), p.e0150005-e0150005
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1770505037
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Accuracy
Adaptive algorithms
Algorithms
Applied mathematics
Biology and Life Sciences
Cellular telephones
Classification
Computer and Information Sciences
Computer science
Computer Simulation
Conservation
Coordinate transformations
Dilution
Eigen values
Eigenvalues
Engineering and Technology
Fault detection
Genetic algorithms
Geographic Information Systems
Geometric dilution of precision
Geometry
Global Positioning System
Global positioning systems
GPS
International conferences
Linear algebra
Methods
Mutation
Navigation satellites
Neural networks
Optimization
Physical Sciences
Point Mutation
Principal components analysis
Research and Analysis Methods
Satellite Communications
Satellite navigation systems
Satellites
Set theory
title A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Method%20for%20Optimum%20Global%20Positioning%20System%20Satellite%20Selection%20Based%20on%20a%20Modified%20Genetic%20Algorithm&rft.jtitle=PloS%20one&rft.au=Song,%20Jiancai&rft.date=2016-03-04&rft.volume=11&rft.issue=3&rft.spage=e0150005&rft.epage=e0150005&rft.pages=e0150005-e0150005&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0150005&rft_dat=%3Cgale_plos_%3EA445095591%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770505037&rft_id=info:pmid/26943638&rft_galeid=A445095591&rft_doaj_id=oai_doaj_org_article_c26b3af5f1804d3fb7ea14cea17dc522&rfr_iscdi=true