A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm
In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an e...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-03, Vol.11 (3), p.e0150005-e0150005 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0150005 |
---|---|
container_issue | 3 |
container_start_page | e0150005 |
container_title | PloS one |
container_volume | 11 |
creator | Song, Jiancai Xue, Guixiang Kang, Yanan |
description | In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 ∼ n) while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM) or fault detection and exclusion (FDE). This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones. |
doi_str_mv | 10.1371/journal.pone.0150005 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1770505037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A445095591</galeid><doaj_id>oai_doaj_org_article_c26b3af5f1804d3fb7ea14cea17dc522</doaj_id><sourcerecordid>A445095591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-10fe9b67e0c8fba8874679f2e34aaadb8aa0dfd775a1d1061ab18cf465be1d7b3</originalsourceid><addsrcrecordid>eNqNk9tuEzEQhlcIREvhDRBYQkJwkWDvybs3lUIFIVJLEAFurVl7nLjyrsPaW9G3xzm0SlAvkCUfv_lnPPYkyUtGxyzj7MO1G_oO7HjtOhxTVlBKi0fJKauzdFSmNHt8MD9Jnnl_HYGsKsunyUla1nlWZtVp0k3IV3eDllxhWDlFtOvJfB1MO7Rkal0Dlnxz3gTjOtMtyeLWB2zJAgJaawKSBVqUm1PyETwqEidArpwy2sTVFDsMRpKJXbrehFX7PHmiwXp8sR_Pkp-fP_24-DK6nE9nF5PLkSzrNIwY1Vg3JUcqK91AVfG85LVOMcsBQDUVAFVacV4AU4yWDBpWSZ2XRYNM8SY7S17vdNfWebFPlReMc1rElvFIzHaEcnAt1r1pob8VDozYbrh-KaCPsVsUMi2bDHShWUVzlemGI7Bcxo4rWaRp1DrfexuaFpXELvRgj0SPTzqzEkt3I3LOq3or8G4v0LvfA_ogWuNlTDF06IZt3CzPOaV1RN_8gz58uz21hHgB02kX_cqNqJjkeUHroqhZpMYPULEpbI2M_0qbuH9k8P7IIDIB_4QlDN6L2eL7_7PzX8fs2wN2hWDDyjs7bD6WPwbzHSh7532P-j7JjIpNWdxlQ2zKQuzLIpq9Onyge6O7Osj-Ag9ACMA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770505037</pqid></control><display><type>article</type><title>A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Song, Jiancai ; Xue, Guixiang ; Kang, Yanan</creator><contributor>Wang, Yuanquan</contributor><creatorcontrib>Song, Jiancai ; Xue, Guixiang ; Kang, Yanan ; Wang, Yuanquan</creatorcontrib><description>In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 ∼ n) while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM) or fault detection and exclusion (FDE). This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0150005</identifier><identifier>PMID: 26943638</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Adaptive algorithms ; Algorithms ; Applied mathematics ; Biology and Life Sciences ; Cellular telephones ; Classification ; Computer and Information Sciences ; Computer science ; Computer Simulation ; Conservation ; Coordinate transformations ; Dilution ; Eigen values ; Eigenvalues ; Engineering and Technology ; Fault detection ; Genetic algorithms ; Geographic Information Systems ; Geometric dilution of precision ; Geometry ; Global Positioning System ; Global positioning systems ; GPS ; International conferences ; Linear algebra ; Methods ; Mutation ; Navigation satellites ; Neural networks ; Optimization ; Physical Sciences ; Point Mutation ; Principal components analysis ; Research and Analysis Methods ; Satellite Communications ; Satellite navigation systems ; Satellites ; Set theory</subject><ispartof>PloS one, 2016-03, Vol.11 (3), p.e0150005-e0150005</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Song et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Song et al 2016 Song et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-10fe9b67e0c8fba8874679f2e34aaadb8aa0dfd775a1d1061ab18cf465be1d7b3</citedby><cites>FETCH-LOGICAL-c692t-10fe9b67e0c8fba8874679f2e34aaadb8aa0dfd775a1d1061ab18cf465be1d7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778922/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778922/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26943638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wang, Yuanquan</contributor><creatorcontrib>Song, Jiancai</creatorcontrib><creatorcontrib>Xue, Guixiang</creatorcontrib><creatorcontrib>Kang, Yanan</creatorcontrib><title>A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 ∼ n) while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM) or fault detection and exclusion (FDE). This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones.</description><subject>Accuracy</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Biology and Life Sciences</subject><subject>Cellular telephones</subject><subject>Classification</subject><subject>Computer and Information Sciences</subject><subject>Computer science</subject><subject>Computer Simulation</subject><subject>Conservation</subject><subject>Coordinate transformations</subject><subject>Dilution</subject><subject>Eigen values</subject><subject>Eigenvalues</subject><subject>Engineering and Technology</subject><subject>Fault detection</subject><subject>Genetic algorithms</subject><subject>Geographic Information Systems</subject><subject>Geometric dilution of precision</subject><subject>Geometry</subject><subject>Global Positioning System</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>International conferences</subject><subject>Linear algebra</subject><subject>Methods</subject><subject>Mutation</subject><subject>Navigation satellites</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Physical Sciences</subject><subject>Point Mutation</subject><subject>Principal components analysis</subject><subject>Research and Analysis Methods</subject><subject>Satellite Communications</subject><subject>Satellite navigation systems</subject><subject>Satellites</subject><subject>Set theory</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tuEzEQhlcIREvhDRBYQkJwkWDvybs3lUIFIVJLEAFurVl7nLjyrsPaW9G3xzm0SlAvkCUfv_lnPPYkyUtGxyzj7MO1G_oO7HjtOhxTVlBKi0fJKauzdFSmNHt8MD9Jnnl_HYGsKsunyUla1nlWZtVp0k3IV3eDllxhWDlFtOvJfB1MO7Rkal0Dlnxz3gTjOtMtyeLWB2zJAgJaawKSBVqUm1PyETwqEidArpwy2sTVFDsMRpKJXbrehFX7PHmiwXp8sR_Pkp-fP_24-DK6nE9nF5PLkSzrNIwY1Vg3JUcqK91AVfG85LVOMcsBQDUVAFVacV4AU4yWDBpWSZ2XRYNM8SY7S17vdNfWebFPlReMc1rElvFIzHaEcnAt1r1pob8VDozYbrh-KaCPsVsUMi2bDHShWUVzlemGI7Bcxo4rWaRp1DrfexuaFpXELvRgj0SPTzqzEkt3I3LOq3or8G4v0LvfA_ogWuNlTDF06IZt3CzPOaV1RN_8gz58uz21hHgB02kX_cqNqJjkeUHroqhZpMYPULEpbI2M_0qbuH9k8P7IIDIB_4QlDN6L2eL7_7PzX8fs2wN2hWDDyjs7bD6WPwbzHSh7532P-j7JjIpNWdxlQ2zKQuzLIpq9Onyge6O7Osj-Ag9ACMA</recordid><startdate>20160304</startdate><enddate>20160304</enddate><creator>Song, Jiancai</creator><creator>Xue, Guixiang</creator><creator>Kang, Yanan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160304</creationdate><title>A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm</title><author>Song, Jiancai ; Xue, Guixiang ; Kang, Yanan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-10fe9b67e0c8fba8874679f2e34aaadb8aa0dfd775a1d1061ab18cf465be1d7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Biology and Life Sciences</topic><topic>Cellular telephones</topic><topic>Classification</topic><topic>Computer and Information Sciences</topic><topic>Computer science</topic><topic>Computer Simulation</topic><topic>Conservation</topic><topic>Coordinate transformations</topic><topic>Dilution</topic><topic>Eigen values</topic><topic>Eigenvalues</topic><topic>Engineering and Technology</topic><topic>Fault detection</topic><topic>Genetic algorithms</topic><topic>Geographic Information Systems</topic><topic>Geometric dilution of precision</topic><topic>Geometry</topic><topic>Global Positioning System</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>International conferences</topic><topic>Linear algebra</topic><topic>Methods</topic><topic>Mutation</topic><topic>Navigation satellites</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Physical Sciences</topic><topic>Point Mutation</topic><topic>Principal components analysis</topic><topic>Research and Analysis Methods</topic><topic>Satellite Communications</topic><topic>Satellite navigation systems</topic><topic>Satellites</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Jiancai</creatorcontrib><creatorcontrib>Xue, Guixiang</creatorcontrib><creatorcontrib>Kang, Yanan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Jiancai</au><au>Xue, Guixiang</au><au>Kang, Yanan</au><au>Wang, Yuanquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-03-04</date><risdate>2016</risdate><volume>11</volume><issue>3</issue><spage>e0150005</spage><epage>e0150005</epage><pages>e0150005-e0150005</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 ∼ n) while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM) or fault detection and exclusion (FDE). This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26943638</pmid><doi>10.1371/journal.pone.0150005</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-03, Vol.11 (3), p.e0150005-e0150005 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1770505037 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Accuracy Adaptive algorithms Algorithms Applied mathematics Biology and Life Sciences Cellular telephones Classification Computer and Information Sciences Computer science Computer Simulation Conservation Coordinate transformations Dilution Eigen values Eigenvalues Engineering and Technology Fault detection Genetic algorithms Geographic Information Systems Geometric dilution of precision Geometry Global Positioning System Global positioning systems GPS International conferences Linear algebra Methods Mutation Navigation satellites Neural networks Optimization Physical Sciences Point Mutation Principal components analysis Research and Analysis Methods Satellite Communications Satellite navigation systems Satellites Set theory |
title | A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Method%20for%20Optimum%20Global%20Positioning%20System%20Satellite%20Selection%20Based%20on%20a%20Modified%20Genetic%20Algorithm&rft.jtitle=PloS%20one&rft.au=Song,%20Jiancai&rft.date=2016-03-04&rft.volume=11&rft.issue=3&rft.spage=e0150005&rft.epage=e0150005&rft.pages=e0150005-e0150005&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0150005&rft_dat=%3Cgale_plos_%3EA445095591%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770505037&rft_id=info:pmid/26943638&rft_galeid=A445095591&rft_doaj_id=oai_doaj_org_article_c26b3af5f1804d3fb7ea14cea17dc522&rfr_iscdi=true |