Inhibition of Nickel Nanoparticles-Induced Toxicity by Epigallocatechin-3-Gallate in JB6 Cells May Be through Down-Regulation of the MAPK Signaling Pathways

With the rapid development in nanotechnology, nickel nanoparticles (Ni NPs) have emerged in the application of nanomedicine in recent years. However, the potential adverse health effects of Ni NPs are unclear. In this study, we examined the inhibition effects of epigallocatechin-3-gallate (EGCG) on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-03, Vol.11 (3), p.e0150954
Hauptverfasser: Gu, Yuanliang, Wang, Yafei, Zhou, Qi, Bowman, Linda, Mao, Guochuan, Zou, Baobo, Xu, Jin, Liu, Yu, Liu, Kui, Zhao, Jinshun, Ding, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page e0150954
container_title PloS one
container_volume 11
creator Gu, Yuanliang
Wang, Yafei
Zhou, Qi
Bowman, Linda
Mao, Guochuan
Zou, Baobo
Xu, Jin
Liu, Yu
Liu, Kui
Zhao, Jinshun
Ding, Min
description With the rapid development in nanotechnology, nickel nanoparticles (Ni NPs) have emerged in the application of nanomedicine in recent years. However, the potential adverse health effects of Ni NPs are unclear. In this study, we examined the inhibition effects of epigallocatechin-3-gallate (EGCG) on the toxicity induced by Ni NPs in mouse epidermal cell line (JB6 cell). MTT assay showed that Ni NPs induced cytotoxicity in a dose-dependent manner while EGCG exerted a certain inhibition on the toxicity. Additionally, EGCG could reduce the apoptotic cell number and the level of reactive oxygen species (ROS) in JB6 cells induced by Ni NPs. Furthermore, we observed that EGCG could down-regulate Ni NPs-induced activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) activation in JB6 cells, which has been shown to play pivotal roles in tumor initiation, promotion and progression. Western blot indicated that EGCG could alleviate the toxicity of Ni NPs through regulating protein changes in MAPK signaling pathways. In summary, our results suggest that careful evaluation on the potential health effects of Ni NPs is necessary before being widely used in the field of nanomedicine. Inhibition of EGCG on Ni NPs-induced cytotoxicity in JB6 cells may be through the MAPK signaling pathways suggesting that EGCG might be useful in preventing the toxicity of Ni NPs.
doi_str_mv 10.1371/journal.pone.0150954
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1770505019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A445095594</galeid><doaj_id>oai_doaj_org_article_ba2b2fd5ad194043a5a33443247bb948</doaj_id><sourcerecordid>A445095594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-6b2ba37bd6d37570dc9d33ba83a0e6d4e0951744820a5127af9cc2fcbf143be13</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYqPwDxBYQkLiIsWOnaS5QerKGIV9aRvcWv5K4s61S-yw9b_wY3FZNrUSSMgX_nrOa_v1OUnyEsExwiV6v3B9Z5kZr5xVY4hyWOXkUbKPKpylRQbx463xXvLM-wWEOZ4UxdNkLysqggsC95Nfc9tqroN2FrganGpxrQw4ZdatWBe0MMqncyt7oSS4crda6LAGfA0OV7phxjjBghKttilOj-I8zoC24MtBAWbKGA9O2BocKBDazvVNCz66G5teqKaP5HBkaBU4mZ5_BZe6ie_RtgHnLLQ3bO2fJ09qZrx6MfSj5Nunw6vZ5_T47Gg-mx6noqiykBY84wyXXBYSl3kJpagkxpxNMIOqkERFa1BJyCSDLEdZyepKiKwWvEYEc4XwKHl9p7syztPBWE9RWcI8tmjjKJnfEdKxBV11esm6NXVM0z8LrmvoYBflLONZLXMmUUUgwSxnGBOCM1JyXpFJ1PownNbzpZJC2dAxsyO6u2N1Sxv3k5KynJTF5jJvBoHO_eiVD_-48kDFf1JU29pFMbHUXtApIZt0yWMSjJLxX6jYpFpqEVOr1nF9J-DdTkBkgroNDeu9p_PLi_9nz77vsm-32FYxE1rvTL9JE78LkjtQdM77TtUPziFIN5Vx7wbdVAYdKiOGvdp2_SHovhTwb4UsCbw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770505019</pqid></control><display><type>article</type><title>Inhibition of Nickel Nanoparticles-Induced Toxicity by Epigallocatechin-3-Gallate in JB6 Cells May Be through Down-Regulation of the MAPK Signaling Pathways</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gu, Yuanliang ; Wang, Yafei ; Zhou, Qi ; Bowman, Linda ; Mao, Guochuan ; Zou, Baobo ; Xu, Jin ; Liu, Yu ; Liu, Kui ; Zhao, Jinshun ; Ding, Min</creator><contributor>Wang, Hong</contributor><creatorcontrib>Gu, Yuanliang ; Wang, Yafei ; Zhou, Qi ; Bowman, Linda ; Mao, Guochuan ; Zou, Baobo ; Xu, Jin ; Liu, Yu ; Liu, Kui ; Zhao, Jinshun ; Ding, Min ; Wang, Hong</creatorcontrib><description>With the rapid development in nanotechnology, nickel nanoparticles (Ni NPs) have emerged in the application of nanomedicine in recent years. However, the potential adverse health effects of Ni NPs are unclear. In this study, we examined the inhibition effects of epigallocatechin-3-gallate (EGCG) on the toxicity induced by Ni NPs in mouse epidermal cell line (JB6 cell). MTT assay showed that Ni NPs induced cytotoxicity in a dose-dependent manner while EGCG exerted a certain inhibition on the toxicity. Additionally, EGCG could reduce the apoptotic cell number and the level of reactive oxygen species (ROS) in JB6 cells induced by Ni NPs. Furthermore, we observed that EGCG could down-regulate Ni NPs-induced activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) activation in JB6 cells, which has been shown to play pivotal roles in tumor initiation, promotion and progression. Western blot indicated that EGCG could alleviate the toxicity of Ni NPs through regulating protein changes in MAPK signaling pathways. In summary, our results suggest that careful evaluation on the potential health effects of Ni NPs is necessary before being widely used in the field of nanomedicine. Inhibition of EGCG on Ni NPs-induced cytotoxicity in JB6 cells may be through the MAPK signaling pathways suggesting that EGCG might be useful in preventing the toxicity of Ni NPs.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0150954</identifier><identifier>PMID: 26943640</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activator protein 1 ; Animals ; Apoptosis ; Apoptosis - drug effects ; Biology and Life Sciences ; Catechin - analogs &amp; derivatives ; Catechin - pharmacology ; Causes of ; Cell Count ; Cell cycle ; Cell Cycle - drug effects ; Cell Line ; Cell number ; Cell Shape - drug effects ; Cell Survival - drug effects ; Cytotoxicity ; Down-Regulation - drug effects ; Engineering and Technology ; Epigallocatechin gallate ; Epigallocatechin-3-gallate ; Genetic aspects ; Health aspects ; Health risks ; Inhibition ; Kinases ; Liver cancer ; Luciferases - metabolism ; Lung cancer ; MAP kinase ; MAP Kinase Signaling System - drug effects ; Medical laboratories ; Medicine ; Medicine and Health Sciences ; Metal Nanoparticles - toxicity ; Metal Nanoparticles - ultrastructure ; Mice ; Mitogen-activated protein kinases ; Molecular biology ; Nanoparticles ; Nanotechnology ; NF-kappa B - metabolism ; NF-κB protein ; Nickel ; Nickel (Metal) ; Nickel - toxicity ; Occupational safety ; Oxidative Stress - drug effects ; Oxygen ; Pathways ; Phosphatase ; Physical Sciences ; Physiological aspects ; Physiology ; Polyphenols ; Proteins ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Rodents ; Signal transduction ; Signaling ; Studies ; Tea ; Toxicity ; Toxicology ; Transcription Factor AP-1 - metabolism ; Transcription factors</subject><ispartof>PloS one, 2016-03, Vol.11 (3), p.e0150954</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Gu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Gu et al 2016 Gu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-6b2ba37bd6d37570dc9d33ba83a0e6d4e0951744820a5127af9cc2fcbf143be13</citedby><cites>FETCH-LOGICAL-c692t-6b2ba37bd6d37570dc9d33ba83a0e6d4e0951744820a5127af9cc2fcbf143be13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778769/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778769/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26943640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wang, Hong</contributor><creatorcontrib>Gu, Yuanliang</creatorcontrib><creatorcontrib>Wang, Yafei</creatorcontrib><creatorcontrib>Zhou, Qi</creatorcontrib><creatorcontrib>Bowman, Linda</creatorcontrib><creatorcontrib>Mao, Guochuan</creatorcontrib><creatorcontrib>Zou, Baobo</creatorcontrib><creatorcontrib>Xu, Jin</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Liu, Kui</creatorcontrib><creatorcontrib>Zhao, Jinshun</creatorcontrib><creatorcontrib>Ding, Min</creatorcontrib><title>Inhibition of Nickel Nanoparticles-Induced Toxicity by Epigallocatechin-3-Gallate in JB6 Cells May Be through Down-Regulation of the MAPK Signaling Pathways</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>With the rapid development in nanotechnology, nickel nanoparticles (Ni NPs) have emerged in the application of nanomedicine in recent years. However, the potential adverse health effects of Ni NPs are unclear. In this study, we examined the inhibition effects of epigallocatechin-3-gallate (EGCG) on the toxicity induced by Ni NPs in mouse epidermal cell line (JB6 cell). MTT assay showed that Ni NPs induced cytotoxicity in a dose-dependent manner while EGCG exerted a certain inhibition on the toxicity. Additionally, EGCG could reduce the apoptotic cell number and the level of reactive oxygen species (ROS) in JB6 cells induced by Ni NPs. Furthermore, we observed that EGCG could down-regulate Ni NPs-induced activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) activation in JB6 cells, which has been shown to play pivotal roles in tumor initiation, promotion and progression. Western blot indicated that EGCG could alleviate the toxicity of Ni NPs through regulating protein changes in MAPK signaling pathways. In summary, our results suggest that careful evaluation on the potential health effects of Ni NPs is necessary before being widely used in the field of nanomedicine. Inhibition of EGCG on Ni NPs-induced cytotoxicity in JB6 cells may be through the MAPK signaling pathways suggesting that EGCG might be useful in preventing the toxicity of Ni NPs.</description><subject>Activator protein 1</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biology and Life Sciences</subject><subject>Catechin - analogs &amp; derivatives</subject><subject>Catechin - pharmacology</subject><subject>Causes of</subject><subject>Cell Count</subject><subject>Cell cycle</subject><subject>Cell Cycle - drug effects</subject><subject>Cell Line</subject><subject>Cell number</subject><subject>Cell Shape - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Cytotoxicity</subject><subject>Down-Regulation - drug effects</subject><subject>Engineering and Technology</subject><subject>Epigallocatechin gallate</subject><subject>Epigallocatechin-3-gallate</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Health risks</subject><subject>Inhibition</subject><subject>Kinases</subject><subject>Liver cancer</subject><subject>Luciferases - metabolism</subject><subject>Lung cancer</subject><subject>MAP kinase</subject><subject>MAP Kinase Signaling System - drug effects</subject><subject>Medical laboratories</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Metal Nanoparticles - toxicity</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Mice</subject><subject>Mitogen-activated protein kinases</subject><subject>Molecular biology</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>Nickel</subject><subject>Nickel (Metal)</subject><subject>Nickel - toxicity</subject><subject>Occupational safety</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxygen</subject><subject>Pathways</subject><subject>Phosphatase</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Polyphenols</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Studies</subject><subject>Tea</subject><subject>Toxicity</subject><subject>Toxicology</subject><subject>Transcription Factor AP-1 - metabolism</subject><subject>Transcription factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYqPwDxBYQkLiIsWOnaS5QerKGIV9aRvcWv5K4s61S-yw9b_wY3FZNrUSSMgX_nrOa_v1OUnyEsExwiV6v3B9Z5kZr5xVY4hyWOXkUbKPKpylRQbx463xXvLM-wWEOZ4UxdNkLysqggsC95Nfc9tqroN2FrganGpxrQw4ZdatWBe0MMqncyt7oSS4crda6LAGfA0OV7phxjjBghKttilOj-I8zoC24MtBAWbKGA9O2BocKBDazvVNCz66G5teqKaP5HBkaBU4mZ5_BZe6ie_RtgHnLLQ3bO2fJ09qZrx6MfSj5Nunw6vZ5_T47Gg-mx6noqiykBY84wyXXBYSl3kJpagkxpxNMIOqkERFa1BJyCSDLEdZyepKiKwWvEYEc4XwKHl9p7syztPBWE9RWcI8tmjjKJnfEdKxBV11esm6NXVM0z8LrmvoYBflLONZLXMmUUUgwSxnGBOCM1JyXpFJ1PownNbzpZJC2dAxsyO6u2N1Sxv3k5KynJTF5jJvBoHO_eiVD_-48kDFf1JU29pFMbHUXtApIZt0yWMSjJLxX6jYpFpqEVOr1nF9J-DdTkBkgroNDeu9p_PLi_9nz77vsm-32FYxE1rvTL9JE78LkjtQdM77TtUPziFIN5Vx7wbdVAYdKiOGvdp2_SHovhTwb4UsCbw</recordid><startdate>20160304</startdate><enddate>20160304</enddate><creator>Gu, Yuanliang</creator><creator>Wang, Yafei</creator><creator>Zhou, Qi</creator><creator>Bowman, Linda</creator><creator>Mao, Guochuan</creator><creator>Zou, Baobo</creator><creator>Xu, Jin</creator><creator>Liu, Yu</creator><creator>Liu, Kui</creator><creator>Zhao, Jinshun</creator><creator>Ding, Min</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160304</creationdate><title>Inhibition of Nickel Nanoparticles-Induced Toxicity by Epigallocatechin-3-Gallate in JB6 Cells May Be through Down-Regulation of the MAPK Signaling Pathways</title><author>Gu, Yuanliang ; Wang, Yafei ; Zhou, Qi ; Bowman, Linda ; Mao, Guochuan ; Zou, Baobo ; Xu, Jin ; Liu, Yu ; Liu, Kui ; Zhao, Jinshun ; Ding, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-6b2ba37bd6d37570dc9d33ba83a0e6d4e0951744820a5127af9cc2fcbf143be13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Activator protein 1</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biology and Life Sciences</topic><topic>Catechin - analogs &amp; derivatives</topic><topic>Catechin - pharmacology</topic><topic>Causes of</topic><topic>Cell Count</topic><topic>Cell cycle</topic><topic>Cell Cycle - drug effects</topic><topic>Cell Line</topic><topic>Cell number</topic><topic>Cell Shape - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Cytotoxicity</topic><topic>Down-Regulation - drug effects</topic><topic>Engineering and Technology</topic><topic>Epigallocatechin gallate</topic><topic>Epigallocatechin-3-gallate</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Health risks</topic><topic>Inhibition</topic><topic>Kinases</topic><topic>Liver cancer</topic><topic>Luciferases - metabolism</topic><topic>Lung cancer</topic><topic>MAP kinase</topic><topic>MAP Kinase Signaling System - drug effects</topic><topic>Medical laboratories</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Metal Nanoparticles - toxicity</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Mice</topic><topic>Mitogen-activated protein kinases</topic><topic>Molecular biology</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>Nickel</topic><topic>Nickel (Metal)</topic><topic>Nickel - toxicity</topic><topic>Occupational safety</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxygen</topic><topic>Pathways</topic><topic>Phosphatase</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Polyphenols</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Studies</topic><topic>Tea</topic><topic>Toxicity</topic><topic>Toxicology</topic><topic>Transcription Factor AP-1 - metabolism</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Yuanliang</creatorcontrib><creatorcontrib>Wang, Yafei</creatorcontrib><creatorcontrib>Zhou, Qi</creatorcontrib><creatorcontrib>Bowman, Linda</creatorcontrib><creatorcontrib>Mao, Guochuan</creatorcontrib><creatorcontrib>Zou, Baobo</creatorcontrib><creatorcontrib>Xu, Jin</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Liu, Kui</creatorcontrib><creatorcontrib>Zhao, Jinshun</creatorcontrib><creatorcontrib>Ding, Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Yuanliang</au><au>Wang, Yafei</au><au>Zhou, Qi</au><au>Bowman, Linda</au><au>Mao, Guochuan</au><au>Zou, Baobo</au><au>Xu, Jin</au><au>Liu, Yu</au><au>Liu, Kui</au><au>Zhao, Jinshun</au><au>Ding, Min</au><au>Wang, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of Nickel Nanoparticles-Induced Toxicity by Epigallocatechin-3-Gallate in JB6 Cells May Be through Down-Regulation of the MAPK Signaling Pathways</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-03-04</date><risdate>2016</risdate><volume>11</volume><issue>3</issue><spage>e0150954</spage><pages>e0150954-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>With the rapid development in nanotechnology, nickel nanoparticles (Ni NPs) have emerged in the application of nanomedicine in recent years. However, the potential adverse health effects of Ni NPs are unclear. In this study, we examined the inhibition effects of epigallocatechin-3-gallate (EGCG) on the toxicity induced by Ni NPs in mouse epidermal cell line (JB6 cell). MTT assay showed that Ni NPs induced cytotoxicity in a dose-dependent manner while EGCG exerted a certain inhibition on the toxicity. Additionally, EGCG could reduce the apoptotic cell number and the level of reactive oxygen species (ROS) in JB6 cells induced by Ni NPs. Furthermore, we observed that EGCG could down-regulate Ni NPs-induced activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) activation in JB6 cells, which has been shown to play pivotal roles in tumor initiation, promotion and progression. Western blot indicated that EGCG could alleviate the toxicity of Ni NPs through regulating protein changes in MAPK signaling pathways. In summary, our results suggest that careful evaluation on the potential health effects of Ni NPs is necessary before being widely used in the field of nanomedicine. Inhibition of EGCG on Ni NPs-induced cytotoxicity in JB6 cells may be through the MAPK signaling pathways suggesting that EGCG might be useful in preventing the toxicity of Ni NPs.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26943640</pmid><doi>10.1371/journal.pone.0150954</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-03, Vol.11 (3), p.e0150954
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1770505019
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Activator protein 1
Animals
Apoptosis
Apoptosis - drug effects
Biology and Life Sciences
Catechin - analogs & derivatives
Catechin - pharmacology
Causes of
Cell Count
Cell cycle
Cell Cycle - drug effects
Cell Line
Cell number
Cell Shape - drug effects
Cell Survival - drug effects
Cytotoxicity
Down-Regulation - drug effects
Engineering and Technology
Epigallocatechin gallate
Epigallocatechin-3-gallate
Genetic aspects
Health aspects
Health risks
Inhibition
Kinases
Liver cancer
Luciferases - metabolism
Lung cancer
MAP kinase
MAP Kinase Signaling System - drug effects
Medical laboratories
Medicine
Medicine and Health Sciences
Metal Nanoparticles - toxicity
Metal Nanoparticles - ultrastructure
Mice
Mitogen-activated protein kinases
Molecular biology
Nanoparticles
Nanotechnology
NF-kappa B - metabolism
NF-κB protein
Nickel
Nickel (Metal)
Nickel - toxicity
Occupational safety
Oxidative Stress - drug effects
Oxygen
Pathways
Phosphatase
Physical Sciences
Physiological aspects
Physiology
Polyphenols
Proteins
Reactive oxygen species
Reactive Oxygen Species - metabolism
Rodents
Signal transduction
Signaling
Studies
Tea
Toxicity
Toxicology
Transcription Factor AP-1 - metabolism
Transcription factors
title Inhibition of Nickel Nanoparticles-Induced Toxicity by Epigallocatechin-3-Gallate in JB6 Cells May Be through Down-Regulation of the MAPK Signaling Pathways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20Nickel%20Nanoparticles-Induced%20Toxicity%20by%20Epigallocatechin-3-Gallate%20in%20JB6%20Cells%20May%20Be%20through%20Down-Regulation%20of%20the%20MAPK%20Signaling%20Pathways&rft.jtitle=PloS%20one&rft.au=Gu,%20Yuanliang&rft.date=2016-03-04&rft.volume=11&rft.issue=3&rft.spage=e0150954&rft.pages=e0150954-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0150954&rft_dat=%3Cgale_plos_%3EA445095594%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770505019&rft_id=info:pmid/26943640&rft_galeid=A445095594&rft_doaj_id=oai_doaj_org_article_ba2b2fd5ad194043a5a33443247bb948&rfr_iscdi=true