Inhibition of Nickel Nanoparticles-Induced Toxicity by Epigallocatechin-3-Gallate in JB6 Cells May Be through Down-Regulation of the MAPK Signaling Pathways
With the rapid development in nanotechnology, nickel nanoparticles (Ni NPs) have emerged in the application of nanomedicine in recent years. However, the potential adverse health effects of Ni NPs are unclear. In this study, we examined the inhibition effects of epigallocatechin-3-gallate (EGCG) on...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-03, Vol.11 (3), p.e0150954 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | e0150954 |
container_title | PloS one |
container_volume | 11 |
creator | Gu, Yuanliang Wang, Yafei Zhou, Qi Bowman, Linda Mao, Guochuan Zou, Baobo Xu, Jin Liu, Yu Liu, Kui Zhao, Jinshun Ding, Min |
description | With the rapid development in nanotechnology, nickel nanoparticles (Ni NPs) have emerged in the application of nanomedicine in recent years. However, the potential adverse health effects of Ni NPs are unclear. In this study, we examined the inhibition effects of epigallocatechin-3-gallate (EGCG) on the toxicity induced by Ni NPs in mouse epidermal cell line (JB6 cell). MTT assay showed that Ni NPs induced cytotoxicity in a dose-dependent manner while EGCG exerted a certain inhibition on the toxicity. Additionally, EGCG could reduce the apoptotic cell number and the level of reactive oxygen species (ROS) in JB6 cells induced by Ni NPs. Furthermore, we observed that EGCG could down-regulate Ni NPs-induced activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) activation in JB6 cells, which has been shown to play pivotal roles in tumor initiation, promotion and progression. Western blot indicated that EGCG could alleviate the toxicity of Ni NPs through regulating protein changes in MAPK signaling pathways. In summary, our results suggest that careful evaluation on the potential health effects of Ni NPs is necessary before being widely used in the field of nanomedicine. Inhibition of EGCG on Ni NPs-induced cytotoxicity in JB6 cells may be through the MAPK signaling pathways suggesting that EGCG might be useful in preventing the toxicity of Ni NPs. |
doi_str_mv | 10.1371/journal.pone.0150954 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1770505019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A445095594</galeid><doaj_id>oai_doaj_org_article_ba2b2fd5ad194043a5a33443247bb948</doaj_id><sourcerecordid>A445095594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-6b2ba37bd6d37570dc9d33ba83a0e6d4e0951744820a5127af9cc2fcbf143be13</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYqPwDxBYQkLiIsWOnaS5QerKGIV9aRvcWv5K4s61S-yw9b_wY3FZNrUSSMgX_nrOa_v1OUnyEsExwiV6v3B9Z5kZr5xVY4hyWOXkUbKPKpylRQbx463xXvLM-wWEOZ4UxdNkLysqggsC95Nfc9tqroN2FrganGpxrQw4ZdatWBe0MMqncyt7oSS4crda6LAGfA0OV7phxjjBghKttilOj-I8zoC24MtBAWbKGA9O2BocKBDazvVNCz66G5teqKaP5HBkaBU4mZ5_BZe6ie_RtgHnLLQ3bO2fJ09qZrx6MfSj5Nunw6vZ5_T47Gg-mx6noqiykBY84wyXXBYSl3kJpagkxpxNMIOqkERFa1BJyCSDLEdZyepKiKwWvEYEc4XwKHl9p7syztPBWE9RWcI8tmjjKJnfEdKxBV11esm6NXVM0z8LrmvoYBflLONZLXMmUUUgwSxnGBOCM1JyXpFJ1PownNbzpZJC2dAxsyO6u2N1Sxv3k5KynJTF5jJvBoHO_eiVD_-48kDFf1JU29pFMbHUXtApIZt0yWMSjJLxX6jYpFpqEVOr1nF9J-DdTkBkgroNDeu9p_PLi_9nz77vsm-32FYxE1rvTL9JE78LkjtQdM77TtUPziFIN5Vx7wbdVAYdKiOGvdp2_SHovhTwb4UsCbw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770505019</pqid></control><display><type>article</type><title>Inhibition of Nickel Nanoparticles-Induced Toxicity by Epigallocatechin-3-Gallate in JB6 Cells May Be through Down-Regulation of the MAPK Signaling Pathways</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gu, Yuanliang ; Wang, Yafei ; Zhou, Qi ; Bowman, Linda ; Mao, Guochuan ; Zou, Baobo ; Xu, Jin ; Liu, Yu ; Liu, Kui ; Zhao, Jinshun ; Ding, Min</creator><contributor>Wang, Hong</contributor><creatorcontrib>Gu, Yuanliang ; Wang, Yafei ; Zhou, Qi ; Bowman, Linda ; Mao, Guochuan ; Zou, Baobo ; Xu, Jin ; Liu, Yu ; Liu, Kui ; Zhao, Jinshun ; Ding, Min ; Wang, Hong</creatorcontrib><description>With the rapid development in nanotechnology, nickel nanoparticles (Ni NPs) have emerged in the application of nanomedicine in recent years. However, the potential adverse health effects of Ni NPs are unclear. In this study, we examined the inhibition effects of epigallocatechin-3-gallate (EGCG) on the toxicity induced by Ni NPs in mouse epidermal cell line (JB6 cell). MTT assay showed that Ni NPs induced cytotoxicity in a dose-dependent manner while EGCG exerted a certain inhibition on the toxicity. Additionally, EGCG could reduce the apoptotic cell number and the level of reactive oxygen species (ROS) in JB6 cells induced by Ni NPs. Furthermore, we observed that EGCG could down-regulate Ni NPs-induced activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) activation in JB6 cells, which has been shown to play pivotal roles in tumor initiation, promotion and progression. Western blot indicated that EGCG could alleviate the toxicity of Ni NPs through regulating protein changes in MAPK signaling pathways. In summary, our results suggest that careful evaluation on the potential health effects of Ni NPs is necessary before being widely used in the field of nanomedicine. Inhibition of EGCG on Ni NPs-induced cytotoxicity in JB6 cells may be through the MAPK signaling pathways suggesting that EGCG might be useful in preventing the toxicity of Ni NPs.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0150954</identifier><identifier>PMID: 26943640</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activator protein 1 ; Animals ; Apoptosis ; Apoptosis - drug effects ; Biology and Life Sciences ; Catechin - analogs & derivatives ; Catechin - pharmacology ; Causes of ; Cell Count ; Cell cycle ; Cell Cycle - drug effects ; Cell Line ; Cell number ; Cell Shape - drug effects ; Cell Survival - drug effects ; Cytotoxicity ; Down-Regulation - drug effects ; Engineering and Technology ; Epigallocatechin gallate ; Epigallocatechin-3-gallate ; Genetic aspects ; Health aspects ; Health risks ; Inhibition ; Kinases ; Liver cancer ; Luciferases - metabolism ; Lung cancer ; MAP kinase ; MAP Kinase Signaling System - drug effects ; Medical laboratories ; Medicine ; Medicine and Health Sciences ; Metal Nanoparticles - toxicity ; Metal Nanoparticles - ultrastructure ; Mice ; Mitogen-activated protein kinases ; Molecular biology ; Nanoparticles ; Nanotechnology ; NF-kappa B - metabolism ; NF-κB protein ; Nickel ; Nickel (Metal) ; Nickel - toxicity ; Occupational safety ; Oxidative Stress - drug effects ; Oxygen ; Pathways ; Phosphatase ; Physical Sciences ; Physiological aspects ; Physiology ; Polyphenols ; Proteins ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Rodents ; Signal transduction ; Signaling ; Studies ; Tea ; Toxicity ; Toxicology ; Transcription Factor AP-1 - metabolism ; Transcription factors</subject><ispartof>PloS one, 2016-03, Vol.11 (3), p.e0150954</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 Gu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 Gu et al 2016 Gu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-6b2ba37bd6d37570dc9d33ba83a0e6d4e0951744820a5127af9cc2fcbf143be13</citedby><cites>FETCH-LOGICAL-c692t-6b2ba37bd6d37570dc9d33ba83a0e6d4e0951744820a5127af9cc2fcbf143be13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778769/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778769/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26943640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wang, Hong</contributor><creatorcontrib>Gu, Yuanliang</creatorcontrib><creatorcontrib>Wang, Yafei</creatorcontrib><creatorcontrib>Zhou, Qi</creatorcontrib><creatorcontrib>Bowman, Linda</creatorcontrib><creatorcontrib>Mao, Guochuan</creatorcontrib><creatorcontrib>Zou, Baobo</creatorcontrib><creatorcontrib>Xu, Jin</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Liu, Kui</creatorcontrib><creatorcontrib>Zhao, Jinshun</creatorcontrib><creatorcontrib>Ding, Min</creatorcontrib><title>Inhibition of Nickel Nanoparticles-Induced Toxicity by Epigallocatechin-3-Gallate in JB6 Cells May Be through Down-Regulation of the MAPK Signaling Pathways</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>With the rapid development in nanotechnology, nickel nanoparticles (Ni NPs) have emerged in the application of nanomedicine in recent years. However, the potential adverse health effects of Ni NPs are unclear. In this study, we examined the inhibition effects of epigallocatechin-3-gallate (EGCG) on the toxicity induced by Ni NPs in mouse epidermal cell line (JB6 cell). MTT assay showed that Ni NPs induced cytotoxicity in a dose-dependent manner while EGCG exerted a certain inhibition on the toxicity. Additionally, EGCG could reduce the apoptotic cell number and the level of reactive oxygen species (ROS) in JB6 cells induced by Ni NPs. Furthermore, we observed that EGCG could down-regulate Ni NPs-induced activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) activation in JB6 cells, which has been shown to play pivotal roles in tumor initiation, promotion and progression. Western blot indicated that EGCG could alleviate the toxicity of Ni NPs through regulating protein changes in MAPK signaling pathways. In summary, our results suggest that careful evaluation on the potential health effects of Ni NPs is necessary before being widely used in the field of nanomedicine. Inhibition of EGCG on Ni NPs-induced cytotoxicity in JB6 cells may be through the MAPK signaling pathways suggesting that EGCG might be useful in preventing the toxicity of Ni NPs.</description><subject>Activator protein 1</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biology and Life Sciences</subject><subject>Catechin - analogs & derivatives</subject><subject>Catechin - pharmacology</subject><subject>Causes of</subject><subject>Cell Count</subject><subject>Cell cycle</subject><subject>Cell Cycle - drug effects</subject><subject>Cell Line</subject><subject>Cell number</subject><subject>Cell Shape - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Cytotoxicity</subject><subject>Down-Regulation - drug effects</subject><subject>Engineering and Technology</subject><subject>Epigallocatechin gallate</subject><subject>Epigallocatechin-3-gallate</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Health risks</subject><subject>Inhibition</subject><subject>Kinases</subject><subject>Liver cancer</subject><subject>Luciferases - metabolism</subject><subject>Lung cancer</subject><subject>MAP kinase</subject><subject>MAP Kinase Signaling System - drug effects</subject><subject>Medical laboratories</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Metal Nanoparticles - toxicity</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Mice</subject><subject>Mitogen-activated protein kinases</subject><subject>Molecular biology</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>Nickel</subject><subject>Nickel (Metal)</subject><subject>Nickel - toxicity</subject><subject>Occupational safety</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxygen</subject><subject>Pathways</subject><subject>Phosphatase</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Polyphenols</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Studies</subject><subject>Tea</subject><subject>Toxicity</subject><subject>Toxicology</subject><subject>Transcription Factor AP-1 - metabolism</subject><subject>Transcription factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYqPwDxBYQkLiIsWOnaS5QerKGIV9aRvcWv5K4s61S-yw9b_wY3FZNrUSSMgX_nrOa_v1OUnyEsExwiV6v3B9Z5kZr5xVY4hyWOXkUbKPKpylRQbx463xXvLM-wWEOZ4UxdNkLysqggsC95Nfc9tqroN2FrganGpxrQw4ZdatWBe0MMqncyt7oSS4crda6LAGfA0OV7phxjjBghKttilOj-I8zoC24MtBAWbKGA9O2BocKBDazvVNCz66G5teqKaP5HBkaBU4mZ5_BZe6ie_RtgHnLLQ3bO2fJ09qZrx6MfSj5Nunw6vZ5_T47Gg-mx6noqiykBY84wyXXBYSl3kJpagkxpxNMIOqkERFa1BJyCSDLEdZyepKiKwWvEYEc4XwKHl9p7syztPBWE9RWcI8tmjjKJnfEdKxBV11esm6NXVM0z8LrmvoYBflLONZLXMmUUUgwSxnGBOCM1JyXpFJ1PownNbzpZJC2dAxsyO6u2N1Sxv3k5KynJTF5jJvBoHO_eiVD_-48kDFf1JU29pFMbHUXtApIZt0yWMSjJLxX6jYpFpqEVOr1nF9J-DdTkBkgroNDeu9p_PLi_9nz77vsm-32FYxE1rvTL9JE78LkjtQdM77TtUPziFIN5Vx7wbdVAYdKiOGvdp2_SHovhTwb4UsCbw</recordid><startdate>20160304</startdate><enddate>20160304</enddate><creator>Gu, Yuanliang</creator><creator>Wang, Yafei</creator><creator>Zhou, Qi</creator><creator>Bowman, Linda</creator><creator>Mao, Guochuan</creator><creator>Zou, Baobo</creator><creator>Xu, Jin</creator><creator>Liu, Yu</creator><creator>Liu, Kui</creator><creator>Zhao, Jinshun</creator><creator>Ding, Min</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160304</creationdate><title>Inhibition of Nickel Nanoparticles-Induced Toxicity by Epigallocatechin-3-Gallate in JB6 Cells May Be through Down-Regulation of the MAPK Signaling Pathways</title><author>Gu, Yuanliang ; Wang, Yafei ; Zhou, Qi ; Bowman, Linda ; Mao, Guochuan ; Zou, Baobo ; Xu, Jin ; Liu, Yu ; Liu, Kui ; Zhao, Jinshun ; Ding, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-6b2ba37bd6d37570dc9d33ba83a0e6d4e0951744820a5127af9cc2fcbf143be13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Activator protein 1</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biology and Life Sciences</topic><topic>Catechin - analogs & derivatives</topic><topic>Catechin - pharmacology</topic><topic>Causes of</topic><topic>Cell Count</topic><topic>Cell cycle</topic><topic>Cell Cycle - drug effects</topic><topic>Cell Line</topic><topic>Cell number</topic><topic>Cell Shape - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Cytotoxicity</topic><topic>Down-Regulation - drug effects</topic><topic>Engineering and Technology</topic><topic>Epigallocatechin gallate</topic><topic>Epigallocatechin-3-gallate</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Health risks</topic><topic>Inhibition</topic><topic>Kinases</topic><topic>Liver cancer</topic><topic>Luciferases - metabolism</topic><topic>Lung cancer</topic><topic>MAP kinase</topic><topic>MAP Kinase Signaling System - drug effects</topic><topic>Medical laboratories</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Metal Nanoparticles - toxicity</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Mice</topic><topic>Mitogen-activated protein kinases</topic><topic>Molecular biology</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>Nickel</topic><topic>Nickel (Metal)</topic><topic>Nickel - toxicity</topic><topic>Occupational safety</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxygen</topic><topic>Pathways</topic><topic>Phosphatase</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Polyphenols</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Studies</topic><topic>Tea</topic><topic>Toxicity</topic><topic>Toxicology</topic><topic>Transcription Factor AP-1 - metabolism</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Yuanliang</creatorcontrib><creatorcontrib>Wang, Yafei</creatorcontrib><creatorcontrib>Zhou, Qi</creatorcontrib><creatorcontrib>Bowman, Linda</creatorcontrib><creatorcontrib>Mao, Guochuan</creatorcontrib><creatorcontrib>Zou, Baobo</creatorcontrib><creatorcontrib>Xu, Jin</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Liu, Kui</creatorcontrib><creatorcontrib>Zhao, Jinshun</creatorcontrib><creatorcontrib>Ding, Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Yuanliang</au><au>Wang, Yafei</au><au>Zhou, Qi</au><au>Bowman, Linda</au><au>Mao, Guochuan</au><au>Zou, Baobo</au><au>Xu, Jin</au><au>Liu, Yu</au><au>Liu, Kui</au><au>Zhao, Jinshun</au><au>Ding, Min</au><au>Wang, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of Nickel Nanoparticles-Induced Toxicity by Epigallocatechin-3-Gallate in JB6 Cells May Be through Down-Regulation of the MAPK Signaling Pathways</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-03-04</date><risdate>2016</risdate><volume>11</volume><issue>3</issue><spage>e0150954</spage><pages>e0150954-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>With the rapid development in nanotechnology, nickel nanoparticles (Ni NPs) have emerged in the application of nanomedicine in recent years. However, the potential adverse health effects of Ni NPs are unclear. In this study, we examined the inhibition effects of epigallocatechin-3-gallate (EGCG) on the toxicity induced by Ni NPs in mouse epidermal cell line (JB6 cell). MTT assay showed that Ni NPs induced cytotoxicity in a dose-dependent manner while EGCG exerted a certain inhibition on the toxicity. Additionally, EGCG could reduce the apoptotic cell number and the level of reactive oxygen species (ROS) in JB6 cells induced by Ni NPs. Furthermore, we observed that EGCG could down-regulate Ni NPs-induced activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) activation in JB6 cells, which has been shown to play pivotal roles in tumor initiation, promotion and progression. Western blot indicated that EGCG could alleviate the toxicity of Ni NPs through regulating protein changes in MAPK signaling pathways. In summary, our results suggest that careful evaluation on the potential health effects of Ni NPs is necessary before being widely used in the field of nanomedicine. Inhibition of EGCG on Ni NPs-induced cytotoxicity in JB6 cells may be through the MAPK signaling pathways suggesting that EGCG might be useful in preventing the toxicity of Ni NPs.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26943640</pmid><doi>10.1371/journal.pone.0150954</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-03, Vol.11 (3), p.e0150954 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1770505019 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Activator protein 1 Animals Apoptosis Apoptosis - drug effects Biology and Life Sciences Catechin - analogs & derivatives Catechin - pharmacology Causes of Cell Count Cell cycle Cell Cycle - drug effects Cell Line Cell number Cell Shape - drug effects Cell Survival - drug effects Cytotoxicity Down-Regulation - drug effects Engineering and Technology Epigallocatechin gallate Epigallocatechin-3-gallate Genetic aspects Health aspects Health risks Inhibition Kinases Liver cancer Luciferases - metabolism Lung cancer MAP kinase MAP Kinase Signaling System - drug effects Medical laboratories Medicine Medicine and Health Sciences Metal Nanoparticles - toxicity Metal Nanoparticles - ultrastructure Mice Mitogen-activated protein kinases Molecular biology Nanoparticles Nanotechnology NF-kappa B - metabolism NF-κB protein Nickel Nickel (Metal) Nickel - toxicity Occupational safety Oxidative Stress - drug effects Oxygen Pathways Phosphatase Physical Sciences Physiological aspects Physiology Polyphenols Proteins Reactive oxygen species Reactive Oxygen Species - metabolism Rodents Signal transduction Signaling Studies Tea Toxicity Toxicology Transcription Factor AP-1 - metabolism Transcription factors |
title | Inhibition of Nickel Nanoparticles-Induced Toxicity by Epigallocatechin-3-Gallate in JB6 Cells May Be through Down-Regulation of the MAPK Signaling Pathways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20Nickel%20Nanoparticles-Induced%20Toxicity%20by%20Epigallocatechin-3-Gallate%20in%20JB6%20Cells%20May%20Be%20through%20Down-Regulation%20of%20the%20MAPK%20Signaling%20Pathways&rft.jtitle=PloS%20one&rft.au=Gu,%20Yuanliang&rft.date=2016-03-04&rft.volume=11&rft.issue=3&rft.spage=e0150954&rft.pages=e0150954-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0150954&rft_dat=%3Cgale_plos_%3EA445095594%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770505019&rft_id=info:pmid/26943640&rft_galeid=A445095594&rft_doaj_id=oai_doaj_org_article_ba2b2fd5ad194043a5a33443247bb948&rfr_iscdi=true |