TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling
Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in reg...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-03, Vol.11 (3), p.e0149876-e0149876 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0149876 |
---|---|
container_issue | 3 |
container_start_page | e0149876 |
container_title | PloS one |
container_volume | 11 |
creator | He, Xiaoqing Wang, Hai Jin, Tao Xu, Yongqing Mei, Liangbin Yang, Jun |
description | Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity. |
doi_str_mv | 10.1371/journal.pone.0149876 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1769628049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A444783328</galeid><doaj_id>oai_doaj_org_article_6ead527fac9f4649a5e32ee66c4b31a0</doaj_id><sourcerecordid>A444783328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-42e2a2a5d04ab80c57f5f19b418f5b1aa1b594454d811c74d4c925631bc9aac63</originalsourceid><addsrcrecordid>eNqNk21v0zAQxyMEYmPwDRBEQkLwoiV-iBO_mVTKU6VOReuAl9bFcVJXaTxsp8C3x1mzqUF7gSzZJ9_v_vadfVH0HCVTRDL0bms620IzvTatmiaI8jxjD6JTxAmeMJyQh0f2SfTEuW2SpCRn7HF0ghknScrpaeSulpc0nkmv9-C1aeOv1uyMVy5-H3TjC7DW_Iov1vPe0ehK2QMGbRmvnFemVq2W8QddBZdqvT649xriH60ncAMGK4V4retwX93WT6NHFTROPRvWs-jbp49X8y-T5erzYj5bTiTj2E8oVhgwpGVCocgTmWZVWiFeUJRXaYEAUBFSoCktc4RkRksqOU4ZQYXkAJKRs-jlQfe6MU4M9XICZYwznCeUB2JxIEoDW3Ft9Q7sH2FAi5sNY2sB1mvZKMEUlCnOKpC8ooxySBXBSjEmaUEQJEHrfDitK3aqlKEYFpqR6NjT6o2ozV7QLCMYoyDwZhCw5mennBc77aRqGmiV6fp7ZwkOU9ajr_5B789uoGoICei2MuFc2YuKGaU0ywnBeaCm91BhlGqnZfgElQ77o4C3o4DAePXb19A5Jxbry_9nV9_H7OsjdqOg8Rtnmq7_UG4M0gMorXHOququyCgRfW_cVkP0vSGG3ghhL44f6C7othnIX5_SCUA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1769628049</pqid></control><display><type>article</type><title>TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>He, Xiaoqing ; Wang, Hai ; Jin, Tao ; Xu, Yongqing ; Mei, Liangbin ; Yang, Jun</creator><contributor>Beltrami, Antonio Paolo</contributor><creatorcontrib>He, Xiaoqing ; Wang, Hai ; Jin, Tao ; Xu, Yongqing ; Mei, Liangbin ; Yang, Jun ; Beltrami, Antonio Paolo</creatorcontrib><description>Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0149876</identifier><identifier>PMID: 26930594</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activation ; Adipocytes ; Animals ; Biocompatibility ; Biology and Life Sciences ; Biomedical materials ; Bone growth ; Bone marrow ; Cell death ; Cell Differentiation ; Cell Proliferation ; Cell self-renewal ; Cells, Cultured ; Cellular signal transduction ; Clonal deletion ; Cytokines ; Cytokines - immunology ; Differentiation ; Gene expression ; Genetic aspects ; Interleukin 6 ; Kinases ; Lipopolysaccharides ; Lipopolysaccharides - immunology ; Male ; Medicine and Health Sciences ; Mesenchymal stem cells ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - immunology ; Mesenchyme ; Mice, Inbred C57BL ; Molecular modelling ; mRNA ; Osteoblasts - cytology ; Osteoblasts - immunology ; Physiological aspects ; Regeneration ; Regeneration (physiology) ; Rodents ; Signaling ; siRNA ; Skin & tissue grafts ; Stem cells ; Surgery ; TLR4 protein ; Toll-Like Receptor 4 - immunology ; Toll-like receptors ; Wnt protein ; Wnt Proteins - immunology ; Wnt Signaling Pathway ; Wnt-5a Protein ; Wnt3A Protein - immunology</subject><ispartof>PloS one, 2016-03, Vol.11 (3), p.e0149876-e0149876</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 He et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 He et al 2016 He et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-42e2a2a5d04ab80c57f5f19b418f5b1aa1b594454d811c74d4c925631bc9aac63</citedby><cites>FETCH-LOGICAL-c692t-42e2a2a5d04ab80c57f5f19b418f5b1aa1b594454d811c74d4c925631bc9aac63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773221/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773221/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26930594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Beltrami, Antonio Paolo</contributor><creatorcontrib>He, Xiaoqing</creatorcontrib><creatorcontrib>Wang, Hai</creatorcontrib><creatorcontrib>Jin, Tao</creatorcontrib><creatorcontrib>Xu, Yongqing</creatorcontrib><creatorcontrib>Mei, Liangbin</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><title>TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity.</description><subject>Activation</subject><subject>Adipocytes</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biology and Life Sciences</subject><subject>Biomedical materials</subject><subject>Bone growth</subject><subject>Bone marrow</subject><subject>Cell death</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cell self-renewal</subject><subject>Cells, Cultured</subject><subject>Cellular signal transduction</subject><subject>Clonal deletion</subject><subject>Cytokines</subject><subject>Cytokines - immunology</subject><subject>Differentiation</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Interleukin 6</subject><subject>Kinases</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - immunology</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - immunology</subject><subject>Mesenchyme</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular modelling</subject><subject>mRNA</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - immunology</subject><subject>Physiological aspects</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Rodents</subject><subject>Signaling</subject><subject>siRNA</subject><subject>Skin & tissue grafts</subject><subject>Stem cells</subject><subject>Surgery</subject><subject>TLR4 protein</subject><subject>Toll-Like Receptor 4 - immunology</subject><subject>Toll-like receptors</subject><subject>Wnt protein</subject><subject>Wnt Proteins - immunology</subject><subject>Wnt Signaling Pathway</subject><subject>Wnt-5a Protein</subject><subject>Wnt3A Protein - immunology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk21v0zAQxyMEYmPwDRBEQkLwoiV-iBO_mVTKU6VOReuAl9bFcVJXaTxsp8C3x1mzqUF7gSzZJ9_v_vadfVH0HCVTRDL0bms620IzvTatmiaI8jxjD6JTxAmeMJyQh0f2SfTEuW2SpCRn7HF0ghknScrpaeSulpc0nkmv9-C1aeOv1uyMVy5-H3TjC7DW_Iov1vPe0ehK2QMGbRmvnFemVq2W8QddBZdqvT649xriH60ncAMGK4V4retwX93WT6NHFTROPRvWs-jbp49X8y-T5erzYj5bTiTj2E8oVhgwpGVCocgTmWZVWiFeUJRXaYEAUBFSoCktc4RkRksqOU4ZQYXkAJKRs-jlQfe6MU4M9XICZYwznCeUB2JxIEoDW3Ft9Q7sH2FAi5sNY2sB1mvZKMEUlCnOKpC8ooxySBXBSjEmaUEQJEHrfDitK3aqlKEYFpqR6NjT6o2ozV7QLCMYoyDwZhCw5mennBc77aRqGmiV6fp7ZwkOU9ajr_5B789uoGoICei2MuFc2YuKGaU0ywnBeaCm91BhlGqnZfgElQ77o4C3o4DAePXb19A5Jxbry_9nV9_H7OsjdqOg8Rtnmq7_UG4M0gMorXHOququyCgRfW_cVkP0vSGG3ghhL44f6C7othnIX5_SCUA</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>He, Xiaoqing</creator><creator>Wang, Hai</creator><creator>Jin, Tao</creator><creator>Xu, Yongqing</creator><creator>Mei, Liangbin</creator><creator>Yang, Jun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160301</creationdate><title>TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling</title><author>He, Xiaoqing ; Wang, Hai ; Jin, Tao ; Xu, Yongqing ; Mei, Liangbin ; Yang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-42e2a2a5d04ab80c57f5f19b418f5b1aa1b594454d811c74d4c925631bc9aac63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Activation</topic><topic>Adipocytes</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biology and Life Sciences</topic><topic>Biomedical materials</topic><topic>Bone growth</topic><topic>Bone marrow</topic><topic>Cell death</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cell self-renewal</topic><topic>Cells, Cultured</topic><topic>Cellular signal transduction</topic><topic>Clonal deletion</topic><topic>Cytokines</topic><topic>Cytokines - immunology</topic><topic>Differentiation</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Interleukin 6</topic><topic>Kinases</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - immunology</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - immunology</topic><topic>Mesenchyme</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular modelling</topic><topic>mRNA</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - immunology</topic><topic>Physiological aspects</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Rodents</topic><topic>Signaling</topic><topic>siRNA</topic><topic>Skin & tissue grafts</topic><topic>Stem cells</topic><topic>Surgery</topic><topic>TLR4 protein</topic><topic>Toll-Like Receptor 4 - immunology</topic><topic>Toll-like receptors</topic><topic>Wnt protein</topic><topic>Wnt Proteins - immunology</topic><topic>Wnt Signaling Pathway</topic><topic>Wnt-5a Protein</topic><topic>Wnt3A Protein - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Xiaoqing</creatorcontrib><creatorcontrib>Wang, Hai</creatorcontrib><creatorcontrib>Jin, Tao</creatorcontrib><creatorcontrib>Xu, Yongqing</creatorcontrib><creatorcontrib>Mei, Liangbin</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Xiaoqing</au><au>Wang, Hai</au><au>Jin, Tao</au><au>Xu, Yongqing</au><au>Mei, Liangbin</au><au>Yang, Jun</au><au>Beltrami, Antonio Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>11</volume><issue>3</issue><spage>e0149876</spage><epage>e0149876</epage><pages>e0149876-e0149876</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26930594</pmid><doi>10.1371/journal.pone.0149876</doi><tpages>e0149876</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-03, Vol.11 (3), p.e0149876-e0149876 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1769628049 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Activation Adipocytes Animals Biocompatibility Biology and Life Sciences Biomedical materials Bone growth Bone marrow Cell death Cell Differentiation Cell Proliferation Cell self-renewal Cells, Cultured Cellular signal transduction Clonal deletion Cytokines Cytokines - immunology Differentiation Gene expression Genetic aspects Interleukin 6 Kinases Lipopolysaccharides Lipopolysaccharides - immunology Male Medicine and Health Sciences Mesenchymal stem cells Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - immunology Mesenchyme Mice, Inbred C57BL Molecular modelling mRNA Osteoblasts - cytology Osteoblasts - immunology Physiological aspects Regeneration Regeneration (physiology) Rodents Signaling siRNA Skin & tissue grafts Stem cells Surgery TLR4 protein Toll-Like Receptor 4 - immunology Toll-like receptors Wnt protein Wnt Proteins - immunology Wnt Signaling Pathway Wnt-5a Protein Wnt3A Protein - immunology |
title | TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A08%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TLR4%20Activation%20Promotes%20Bone%20Marrow%20MSC%20Proliferation%20and%20Osteogenic%20Differentiation%20via%20Wnt3a%20and%20Wnt5a%20Signaling&rft.jtitle=PloS%20one&rft.au=He,%20Xiaoqing&rft.date=2016-03-01&rft.volume=11&rft.issue=3&rft.spage=e0149876&rft.epage=e0149876&rft.pages=e0149876-e0149876&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0149876&rft_dat=%3Cgale_plos_%3EA444783328%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1769628049&rft_id=info:pmid/26930594&rft_galeid=A444783328&rft_doaj_id=oai_doaj_org_article_6ead527fac9f4649a5e32ee66c4b31a0&rfr_iscdi=true |