TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling

Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in reg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-03, Vol.11 (3), p.e0149876-e0149876
Hauptverfasser: He, Xiaoqing, Wang, Hai, Jin, Tao, Xu, Yongqing, Mei, Liangbin, Yang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0149876
container_issue 3
container_start_page e0149876
container_title PloS one
container_volume 11
creator He, Xiaoqing
Wang, Hai
Jin, Tao
Xu, Yongqing
Mei, Liangbin
Yang, Jun
description Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity.
doi_str_mv 10.1371/journal.pone.0149876
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1769628049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A444783328</galeid><doaj_id>oai_doaj_org_article_6ead527fac9f4649a5e32ee66c4b31a0</doaj_id><sourcerecordid>A444783328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-42e2a2a5d04ab80c57f5f19b418f5b1aa1b594454d811c74d4c925631bc9aac63</originalsourceid><addsrcrecordid>eNqNk21v0zAQxyMEYmPwDRBEQkLwoiV-iBO_mVTKU6VOReuAl9bFcVJXaTxsp8C3x1mzqUF7gSzZJ9_v_vadfVH0HCVTRDL0bms620IzvTatmiaI8jxjD6JTxAmeMJyQh0f2SfTEuW2SpCRn7HF0ghknScrpaeSulpc0nkmv9-C1aeOv1uyMVy5-H3TjC7DW_Iov1vPe0ehK2QMGbRmvnFemVq2W8QddBZdqvT649xriH60ncAMGK4V4retwX93WT6NHFTROPRvWs-jbp49X8y-T5erzYj5bTiTj2E8oVhgwpGVCocgTmWZVWiFeUJRXaYEAUBFSoCktc4RkRksqOU4ZQYXkAJKRs-jlQfe6MU4M9XICZYwznCeUB2JxIEoDW3Ft9Q7sH2FAi5sNY2sB1mvZKMEUlCnOKpC8ooxySBXBSjEmaUEQJEHrfDitK3aqlKEYFpqR6NjT6o2ozV7QLCMYoyDwZhCw5mennBc77aRqGmiV6fp7ZwkOU9ajr_5B789uoGoICei2MuFc2YuKGaU0ywnBeaCm91BhlGqnZfgElQ77o4C3o4DAePXb19A5Jxbry_9nV9_H7OsjdqOg8Rtnmq7_UG4M0gMorXHOququyCgRfW_cVkP0vSGG3ghhL44f6C7othnIX5_SCUA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1769628049</pqid></control><display><type>article</type><title>TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>He, Xiaoqing ; Wang, Hai ; Jin, Tao ; Xu, Yongqing ; Mei, Liangbin ; Yang, Jun</creator><contributor>Beltrami, Antonio Paolo</contributor><creatorcontrib>He, Xiaoqing ; Wang, Hai ; Jin, Tao ; Xu, Yongqing ; Mei, Liangbin ; Yang, Jun ; Beltrami, Antonio Paolo</creatorcontrib><description>Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0149876</identifier><identifier>PMID: 26930594</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activation ; Adipocytes ; Animals ; Biocompatibility ; Biology and Life Sciences ; Biomedical materials ; Bone growth ; Bone marrow ; Cell death ; Cell Differentiation ; Cell Proliferation ; Cell self-renewal ; Cells, Cultured ; Cellular signal transduction ; Clonal deletion ; Cytokines ; Cytokines - immunology ; Differentiation ; Gene expression ; Genetic aspects ; Interleukin 6 ; Kinases ; Lipopolysaccharides ; Lipopolysaccharides - immunology ; Male ; Medicine and Health Sciences ; Mesenchymal stem cells ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - immunology ; Mesenchyme ; Mice, Inbred C57BL ; Molecular modelling ; mRNA ; Osteoblasts - cytology ; Osteoblasts - immunology ; Physiological aspects ; Regeneration ; Regeneration (physiology) ; Rodents ; Signaling ; siRNA ; Skin &amp; tissue grafts ; Stem cells ; Surgery ; TLR4 protein ; Toll-Like Receptor 4 - immunology ; Toll-like receptors ; Wnt protein ; Wnt Proteins - immunology ; Wnt Signaling Pathway ; Wnt-5a Protein ; Wnt3A Protein - immunology</subject><ispartof>PloS one, 2016-03, Vol.11 (3), p.e0149876-e0149876</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 He et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 He et al 2016 He et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-42e2a2a5d04ab80c57f5f19b418f5b1aa1b594454d811c74d4c925631bc9aac63</citedby><cites>FETCH-LOGICAL-c692t-42e2a2a5d04ab80c57f5f19b418f5b1aa1b594454d811c74d4c925631bc9aac63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773221/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773221/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26930594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Beltrami, Antonio Paolo</contributor><creatorcontrib>He, Xiaoqing</creatorcontrib><creatorcontrib>Wang, Hai</creatorcontrib><creatorcontrib>Jin, Tao</creatorcontrib><creatorcontrib>Xu, Yongqing</creatorcontrib><creatorcontrib>Mei, Liangbin</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><title>TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity.</description><subject>Activation</subject><subject>Adipocytes</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biology and Life Sciences</subject><subject>Biomedical materials</subject><subject>Bone growth</subject><subject>Bone marrow</subject><subject>Cell death</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cell self-renewal</subject><subject>Cells, Cultured</subject><subject>Cellular signal transduction</subject><subject>Clonal deletion</subject><subject>Cytokines</subject><subject>Cytokines - immunology</subject><subject>Differentiation</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Interleukin 6</subject><subject>Kinases</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - immunology</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - immunology</subject><subject>Mesenchyme</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular modelling</subject><subject>mRNA</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - immunology</subject><subject>Physiological aspects</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Rodents</subject><subject>Signaling</subject><subject>siRNA</subject><subject>Skin &amp; tissue grafts</subject><subject>Stem cells</subject><subject>Surgery</subject><subject>TLR4 protein</subject><subject>Toll-Like Receptor 4 - immunology</subject><subject>Toll-like receptors</subject><subject>Wnt protein</subject><subject>Wnt Proteins - immunology</subject><subject>Wnt Signaling Pathway</subject><subject>Wnt-5a Protein</subject><subject>Wnt3A Protein - immunology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk21v0zAQxyMEYmPwDRBEQkLwoiV-iBO_mVTKU6VOReuAl9bFcVJXaTxsp8C3x1mzqUF7gSzZJ9_v_vadfVH0HCVTRDL0bms620IzvTatmiaI8jxjD6JTxAmeMJyQh0f2SfTEuW2SpCRn7HF0ghknScrpaeSulpc0nkmv9-C1aeOv1uyMVy5-H3TjC7DW_Iov1vPe0ehK2QMGbRmvnFemVq2W8QddBZdqvT649xriH60ncAMGK4V4retwX93WT6NHFTROPRvWs-jbp49X8y-T5erzYj5bTiTj2E8oVhgwpGVCocgTmWZVWiFeUJRXaYEAUBFSoCktc4RkRksqOU4ZQYXkAJKRs-jlQfe6MU4M9XICZYwznCeUB2JxIEoDW3Ft9Q7sH2FAi5sNY2sB1mvZKMEUlCnOKpC8ooxySBXBSjEmaUEQJEHrfDitK3aqlKEYFpqR6NjT6o2ozV7QLCMYoyDwZhCw5mennBc77aRqGmiV6fp7ZwkOU9ajr_5B789uoGoICei2MuFc2YuKGaU0ywnBeaCm91BhlGqnZfgElQ77o4C3o4DAePXb19A5Jxbry_9nV9_H7OsjdqOg8Rtnmq7_UG4M0gMorXHOququyCgRfW_cVkP0vSGG3ghhL44f6C7othnIX5_SCUA</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>He, Xiaoqing</creator><creator>Wang, Hai</creator><creator>Jin, Tao</creator><creator>Xu, Yongqing</creator><creator>Mei, Liangbin</creator><creator>Yang, Jun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160301</creationdate><title>TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling</title><author>He, Xiaoqing ; Wang, Hai ; Jin, Tao ; Xu, Yongqing ; Mei, Liangbin ; Yang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-42e2a2a5d04ab80c57f5f19b418f5b1aa1b594454d811c74d4c925631bc9aac63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Activation</topic><topic>Adipocytes</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biology and Life Sciences</topic><topic>Biomedical materials</topic><topic>Bone growth</topic><topic>Bone marrow</topic><topic>Cell death</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cell self-renewal</topic><topic>Cells, Cultured</topic><topic>Cellular signal transduction</topic><topic>Clonal deletion</topic><topic>Cytokines</topic><topic>Cytokines - immunology</topic><topic>Differentiation</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Interleukin 6</topic><topic>Kinases</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - immunology</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - immunology</topic><topic>Mesenchyme</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular modelling</topic><topic>mRNA</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - immunology</topic><topic>Physiological aspects</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Rodents</topic><topic>Signaling</topic><topic>siRNA</topic><topic>Skin &amp; tissue grafts</topic><topic>Stem cells</topic><topic>Surgery</topic><topic>TLR4 protein</topic><topic>Toll-Like Receptor 4 - immunology</topic><topic>Toll-like receptors</topic><topic>Wnt protein</topic><topic>Wnt Proteins - immunology</topic><topic>Wnt Signaling Pathway</topic><topic>Wnt-5a Protein</topic><topic>Wnt3A Protein - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Xiaoqing</creatorcontrib><creatorcontrib>Wang, Hai</creatorcontrib><creatorcontrib>Jin, Tao</creatorcontrib><creatorcontrib>Xu, Yongqing</creatorcontrib><creatorcontrib>Mei, Liangbin</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Xiaoqing</au><au>Wang, Hai</au><au>Jin, Tao</au><au>Xu, Yongqing</au><au>Mei, Liangbin</au><au>Yang, Jun</au><au>Beltrami, Antonio Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>11</volume><issue>3</issue><spage>e0149876</spage><epage>e0149876</epage><pages>e0149876-e0149876</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26930594</pmid><doi>10.1371/journal.pone.0149876</doi><tpages>e0149876</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-03, Vol.11 (3), p.e0149876-e0149876
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1769628049
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Activation
Adipocytes
Animals
Biocompatibility
Biology and Life Sciences
Biomedical materials
Bone growth
Bone marrow
Cell death
Cell Differentiation
Cell Proliferation
Cell self-renewal
Cells, Cultured
Cellular signal transduction
Clonal deletion
Cytokines
Cytokines - immunology
Differentiation
Gene expression
Genetic aspects
Interleukin 6
Kinases
Lipopolysaccharides
Lipopolysaccharides - immunology
Male
Medicine and Health Sciences
Mesenchymal stem cells
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - immunology
Mesenchyme
Mice, Inbred C57BL
Molecular modelling
mRNA
Osteoblasts - cytology
Osteoblasts - immunology
Physiological aspects
Regeneration
Regeneration (physiology)
Rodents
Signaling
siRNA
Skin & tissue grafts
Stem cells
Surgery
TLR4 protein
Toll-Like Receptor 4 - immunology
Toll-like receptors
Wnt protein
Wnt Proteins - immunology
Wnt Signaling Pathway
Wnt-5a Protein
Wnt3A Protein - immunology
title TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A08%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TLR4%20Activation%20Promotes%20Bone%20Marrow%20MSC%20Proliferation%20and%20Osteogenic%20Differentiation%20via%20Wnt3a%20and%20Wnt5a%20Signaling&rft.jtitle=PloS%20one&rft.au=He,%20Xiaoqing&rft.date=2016-03-01&rft.volume=11&rft.issue=3&rft.spage=e0149876&rft.epage=e0149876&rft.pages=e0149876-e0149876&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0149876&rft_dat=%3Cgale_plos_%3EA444783328%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1769628049&rft_id=info:pmid/26930594&rft_galeid=A444783328&rft_doaj_id=oai_doaj_org_article_6ead527fac9f4649a5e32ee66c4b31a0&rfr_iscdi=true